© | Dror Bar-Natan: The Knot Atlas: Torus Knots: |
|
![]() TubePlot |
This page is passe. Go here
instead!
The 10-Crossing Torus Knot T(5,3)Visit T(5,3)'s page at Knotilus! |
PD Presentation: | X7,1,8,20 X14,2,15,1 X15,9,16,8 X2,10,3,9 X3,17,4,16 X10,18,11,17 X11,5,12,4 X18,6,19,5 X19,13,20,12 X6,14,7,13 |
Gauss Code: | {2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1} |
Braid Representative: |
|
Alexander Polynomial: | t-4 - t-3 + t-1 - 1 + t - t3 + t4 |
Conway Polynomial: | 1 + 8z2 + 14z4 + 7z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {10124, ...} |
Determinant and Signature: | {1, 8} |
Jones Polynomial: | q4 + q6 - q10 |
Other knots (up to mirrors) with the same Jones Polynomial: | {10124, ...} |
Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): | q8 + q11 + q14 - q15 + q17 - q18 - q19 + q20 - q21 - q22 + q23 - q25 + q26 - q28 + q29 |
A2 (sl(3)) Invariant: | q14 + q16 + 2q18 + 2q20 + 2q22 + q24 - 2q28 - 2q30 - 2q32 - q34 + q40 |
Kauffman Polynomial: | 2a-12 - a-12z2 - 8a-11z + 14a-11z3 - 7a-11z5 + a-11z7 + 8a-10 - 22a-10z2 + 21a-10z4 - 8a-10z6 + a-10z8 - 8a-9z + 14a-9z3 - 7a-9z5 + a-9z7 + 7a-8 - 21a-8z2 + 21a-8z4 - 8a-8z6 + a-8z8 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {8, 20} |
Khovanov Homology.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=8 is the signature of
T(5,3). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
21 | 1 | -1 | ||||||||||||||||
19 | 1 | -1 | ||||||||||||||||
17 | 1 | 1 | 0 | |||||||||||||||
15 | 1 | 1 | 0 | |||||||||||||||
13 | 1 | 1 | ||||||||||||||||
11 | 1 | 1 | ||||||||||||||||
9 | 1 | 1 | ||||||||||||||||
7 | 1 | 1 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | TubePlot[TorusKnot[5, 3]] |
![]() | |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[5, 3]] |
Out[3]= | 10 |
In[4]:= | PD[TorusKnot[5, 3]] |
Out[4]= | PD[X[7, 1, 8, 20], X[14, 2, 15, 1], X[15, 9, 16, 8], X[2, 10, 3, 9], > X[3, 17, 4, 16], X[10, 18, 11, 17], X[11, 5, 12, 4], X[18, 6, 19, 5], > X[19, 13, 20, 12], X[6, 14, 7, 13]] |
In[5]:= | GaussCode[TorusKnot[5, 3]] |
Out[5]= | GaussCode[2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, > 1] |
In[6]:= | BR[TorusKnot[5, 3]] |
Out[6]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[7]:= | alex = Alexander[TorusKnot[5, 3]][t] |
Out[7]= | -4 -3 1 3 4 -1 + t - t + - + t - t + t t |
In[8]:= | Conway[TorusKnot[5, 3]][z] |
Out[8]= | 2 4 6 8 1 + 8 z + 14 z + 7 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {Knot[10, 124]} |
In[10]:= | {KnotDet[TorusKnot[5, 3]], KnotSignature[TorusKnot[5, 3]]} |
Out[10]= | {1, 8} |
In[11]:= | J=Jones[TorusKnot[5, 3]][q] |
Out[11]= | 4 6 10 q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {Knot[10, 124]} |
In[13]:= | ColouredJones[TorusKnot[5, 3], 2][q] |
Out[13]= | 8 11 14 15 17 18 19 20 21 22 23 25 26 q + q + q - q + q - q - q + q - q - q + q - q + q - 28 29 > q + q |
In[14]:= | A2Invariant[TorusKnot[5, 3]][q] |
Out[14]= | 14 16 18 20 22 24 28 30 32 34 40 q + q + 2 q + 2 q + 2 q + q - 2 q - 2 q - 2 q - q + q |
In[15]:= | Kauffman[TorusKnot[5, 3]][a, z] |
Out[15]= | 2 2 2 3 3 4 2 8 7 8 z 8 z z 22 z 21 z 14 z 14 z 21 z --- + --- + -- - --- - --- - --- - ----- - ----- + ----- + ----- + ----- + 12 10 8 11 9 12 10 8 11 9 10 a a a a a a a a a a a 4 5 5 6 6 7 7 8 8 21 z 7 z 7 z 8 z 8 z z z z z > ----- - ---- - ---- - ---- - ---- + --- + -- + --- + -- 8 11 9 10 8 11 9 10 8 a a a a a a a a a |
In[16]:= | {Vassiliev[2][TorusKnot[5, 3]], Vassiliev[3][TorusKnot[5, 3]]} |
Out[16]= | {8, 20} |
In[17]:= | Kh[TorusKnot[5, 3]][q, t] |
Out[17]= | 7 9 11 2 15 3 13 4 15 4 17 5 19 5 17 6 21 7 q + q + q t + q t + q t + q t + q t + q t + q t + q t |
Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(5,3) |
|