© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(9,2)
T(9,2)
T(11,2)
T(11,2)
T(5,3)
TubePlot
This page is passe. Go here instead!

   The 10-Crossing Torus Knot T(5,3)

Visit T(5,3)'s page at Knotilus!

Acknowledgement

PD Presentation: X7,1,8,20 X14,2,15,1 X15,9,16,8 X2,10,3,9 X3,17,4,16 X10,18,11,17 X11,5,12,4 X18,6,19,5 X19,13,20,12 X6,14,7,13

Gauss Code: {2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1}

Braid Representative:    

Alexander Polynomial: t-4 - t-3 + t-1 - 1 + t - t3 + t4

Conway Polynomial: 1 + 8z2 + 14z4 + 7z6 + z8

Other knots with the same Alexander/Conway Polynomial: {10124, ...}

Determinant and Signature: {1, 8}

Jones Polynomial: q4 + q6 - q10

Other knots (up to mirrors) with the same Jones Polynomial: {10124, ...}

Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): q8 + q11 + q14 - q15 + q17 - q18 - q19 + q20 - q21 - q22 + q23 - q25 + q26 - q28 + q29

A2 (sl(3)) Invariant: q14 + q16 + 2q18 + 2q20 + 2q22 + q24 - 2q28 - 2q30 - 2q32 - q34 + q40

Kauffman Polynomial: 2a-12 - a-12z2 - 8a-11z + 14a-11z3 - 7a-11z5 + a-11z7 + 8a-10 - 22a-10z2 + 21a-10z4 - 8a-10z6 + a-10z8 - 8a-9z + 14a-9z3 - 7a-9z5 + a-9z7 + 7a-8 - 21a-8z2 + 21a-8z4 - 8a-8z6 + a-8z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {8, 20}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=8 is the signature of T(5,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567χ
21       1-1
19     1  -1
17     11 0
15   11   0
13    1   1
11  1     1
91       1
71       1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[5, 3]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[5, 3]]
Out[3]=   
10
In[4]:=
PD[TorusKnot[5, 3]]
Out[4]=   
PD[X[7, 1, 8, 20], X[14, 2, 15, 1], X[15, 9, 16, 8], X[2, 10, 3, 9], 
 
>   X[3, 17, 4, 16], X[10, 18, 11, 17], X[11, 5, 12, 4], X[18, 6, 19, 5], 
 
>   X[19, 13, 20, 12], X[6, 14, 7, 13]]
In[5]:=
GaussCode[TorusKnot[5, 3]]
Out[5]=   
GaussCode[2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 
 
>   1]
In[6]:=
BR[TorusKnot[5, 3]]
Out[6]=   
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[7]:=
alex = Alexander[TorusKnot[5, 3]][t]
Out[7]=   
      -4    -3   1        3    4
-1 + t   - t   + - + t - t  + t
                 t
In[8]:=
Conway[TorusKnot[5, 3]][z]
Out[8]=   
       2       4      6    8
1 + 8 z  + 14 z  + 7 z  + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{Knot[10, 124]}
In[10]:=
{KnotDet[TorusKnot[5, 3]], KnotSignature[TorusKnot[5, 3]]}
Out[10]=   
{1, 8}
In[11]:=
J=Jones[TorusKnot[5, 3]][q]
Out[11]=   
 4    6    10
q  + q  - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{Knot[10, 124]}
In[13]:=
ColouredJones[TorusKnot[5, 3], 2][q]
Out[13]=   
 8    11    14    15    17    18    19    20    21    22    23    25    26
q  + q   + q   - q   + q   - q   - q   + q   - q   - q   + q   - q   + q   - 
 
     28    29
>   q   + q
In[14]:=
A2Invariant[TorusKnot[5, 3]][q]
Out[14]=   
 14    16      18      20      22    24      28      30      32    34    40
q   + q   + 2 q   + 2 q   + 2 q   + q   - 2 q   - 2 q   - 2 q   - q   + q
In[15]:=
Kauffman[TorusKnot[5, 3]][a, z]
Out[15]=   
                              2        2       2       3       3       4
 2     8    7    8 z   8 z   z     22 z    21 z    14 z    14 z    21 z
--- + --- + -- - --- - --- - --- - ----- - ----- + ----- + ----- + ----- + 
 12    10    8    11    9     12     10      8       11      9       10
a     a     a    a     a     a      a       a       a       a       a
 
        4      5      5      6      6    7     7    8     8
    21 z    7 z    7 z    8 z    8 z    z     z    z     z
>   ----- - ---- - ---- - ---- - ---- + --- + -- + --- + --
      8      11      9     10      8     11    9    10    8
     a      a       a     a       a     a     a    a     a
In[16]:=
{Vassiliev[2][TorusKnot[5, 3]], Vassiliev[3][TorusKnot[5, 3]]}
Out[16]=   
{8, 20}
In[17]:=
Kh[TorusKnot[5, 3]][q, t]
Out[17]=   
 7    9    11  2    15  3    13  4    15  4    17  5    19  5    17  6    21  7
q  + q  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(5,3)
T(9,2)
T(9,2)
T(11,2)
T(11,2)