© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(5,3)
T(5,3)
T(13,2)
T(13,2)
T(11,2)
TubePlot
This page is passe. Go here instead!

   The 11-Crossing Torus Knot T(11,2)

Visit T(11,2)'s page at Knotilus!

Acknowledgement

PD Presentation: X5,17,6,16 X17,7,18,6 X7,19,8,18 X19,9,20,8 X9,21,10,20 X21,11,22,10 X11,1,12,22 X1,13,2,12 X13,3,14,2 X3,15,4,14 X15,5,16,4

Gauss Code: {-8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 1, -2, 3, -4, 5, -6, 7}

Braid Representative:    

Alexander Polynomial: t-5 - t-4 + t-3 - t-2 + t-1 - 1 + t - t2 + t3 - t4 + t5

Conway Polynomial: 1 + 15z2 + 35z4 + 28z6 + 9z8 + z10

Other knots with the same Alexander/Conway Polynomial: {K11a367, ...}

Determinant and Signature: {11, 10}

Jones Polynomial: q5 + q7 - q8 + q9 - q10 + q11 - q12 + q13 - q14 + q15 - q16

Other knots (up to mirrors) with the same Jones Polynomial: {K11a367, ...}

Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): q10 + q13 - q15 + q16 - q18 + q19 - q21 + q22 - q24 + q25 - q27 + q28 - q30 + q31 - 2q33 + q34 - q36 + q37 - q39 + q40 - q42 + q43

A2 (sl(3)) Invariant: q18 + q20 + 2q22 + q24 + q26 - q42 - q44 - q46

Kauffman Polynomial: a-21z + a-20z2 - a-19z + a-19z3 - 2a-18z2 + a-18z4 + a-17z - 3a-17z3 + a-17z5 + 3a-16z2 - 4a-16z4 + a-16z6 - a-15z + 6a-15z3 - 5a-15z5 + a-15z7 - 4a-14z2 + 10a-14z4 - 6a-14z6 + a-14z8 + a-13z - 10a-13z3 + 15a-13z5 - 7a-13z7 + a-13z9 - 5a-12 + 25a-12z2 - 41a-12z4 + 29a-12z6 - 9a-12z8 + a-12z10 + 5a-11z - 20a-11z3 + 21a-11z5 - 8a-11z7 + a-11z9 - 6a-10 + 35a-10z2 - 56a-10z4 + 36a-10z6 - 10a-10z8 + a-10z10

V2 and V3, the type 2 and 3 Vassiliev invariants: {15, 55}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=10 is the signature of T(11,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567891011χ
33           1-1
31            0
29         11 0
27            0
25       11   0
23            0
21     11     0
19            0
17   11       0
15            0
13  1         1
111           1
91           1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[11, 2]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[11, 2]]
Out[3]=   
11
In[4]:=
PD[TorusKnot[11, 2]]
Out[4]=   
PD[X[5, 17, 6, 16], X[17, 7, 18, 6], X[7, 19, 8, 18], X[19, 9, 20, 8], 
 
>   X[9, 21, 10, 20], X[21, 11, 22, 10], X[11, 1, 12, 22], X[1, 13, 2, 12], 
 
>   X[13, 3, 14, 2], X[3, 15, 4, 14], X[15, 5, 16, 4]]
In[5]:=
GaussCode[TorusKnot[11, 2]]
Out[5]=   
GaussCode[-8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 1, -2, 3, 
 
>   -4, 5, -6, 7]
In[6]:=
BR[TorusKnot[11, 2]]
Out[6]=   
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[7]:=
alex = Alexander[TorusKnot[11, 2]][t]
Out[7]=   
      -5    -4    -3    -2   1        2    3    4    5
-1 + t   - t   + t   - t   + - + t - t  + t  - t  + t
                             t
In[8]:=
Conway[TorusKnot[11, 2]][z]
Out[8]=   
        2       4       6      8    10
1 + 15 z  + 35 z  + 28 z  + 9 z  + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{Knot[11, Alternating, 367]}
In[10]:=
{KnotDet[TorusKnot[11, 2]], KnotSignature[TorusKnot[11, 2]]}
Out[10]=   
{11, 10}
In[11]:=
J=Jones[TorusKnot[11, 2]][q]
Out[11]=   
 5    7    8    9    10    11    12    13    14    15    16
q  + q  - q  + q  - q   + q   - q   + q   - q   + q   - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{Knot[11, Alternating, 367]}
In[13]:=
ColouredJones[TorusKnot[11, 2], 2][q]
Out[13]=   
 10    13    15    16    18    19    21    22    24    25    27    28    30
q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 
 
     31      33    34    36    37    39    40    42    43
>   q   - 2 q   + q   - q   + q   - q   + q   - q   + q
In[14]:=
A2Invariant[TorusKnot[11, 2]][q]
Out[14]=   
 18    20      22    24    26    42    44    46
q   + q   + 2 q   + q   + q   - q   - q   - q
In[15]:=
Kauffman[TorusKnot[11, 2]][a, z]
Out[15]=   
                                                 2       2      2      2
-5     6     z     z     z     z     z    5 z   z     2 z    3 z    4 z
--- - --- + --- - --- + --- - --- + --- + --- + --- - ---- + ---- - ---- + 
 12    10    21    19    17    15    13    11    20    18     16     14
a     a     a     a     a     a     a     a     a     a      a      a
 
        2       2    3       3      3       3       3    4       4       4
    25 z    35 z    z     3 z    6 z    10 z    20 z    z     4 z    10 z
>   ----- + ----- + --- - ---- + ---- - ----- - ----- + --- - ---- + ----- - 
      12      10     19    17     15      13      11     18    16      14
     a       a      a     a      a       a       a      a     a       a
 
        4       4    5       5       5       5    6       6       6       6
    41 z    56 z    z     5 z    15 z    21 z    z     6 z    29 z    36 z
>   ----- - ----- + --- - ---- + ----- + ----- + --- - ---- + ----- + ----- + 
      12      10     17    15      13      11     16    14      12      10
     a       a      a     a       a       a      a     a       a       a
 
     7       7      7    8       8       8    9     9     10    10
    z     7 z    8 z    z     9 z    10 z    z     z     z     z
>   --- - ---- - ---- + --- - ---- - ----- + --- + --- + --- + ---
     15    13     11     14    12      10     13    11    12    10
    a     a      a      a     a       a      a     a     a     a
In[16]:=
{Vassiliev[2][TorusKnot[11, 2]], Vassiliev[3][TorusKnot[11, 2]]}
Out[16]=   
{15, 55}
In[17]:=
Kh[TorusKnot[11, 2]][q, t]
Out[17]=   
 9    11    13  2    17  3    17  4    21  5    21  6    25  7    25  8
q  + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     29  9    29  10    33  11
>   q   t  + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(11,2)
T(5,3)
T(5,3)
T(13,2)
T(13,2)