PD Presentation: |
X11,25,12,24 X25,13,26,12 X13,1,14,26 X1,15,2,14 X15,3,16,2 X3,17,4,16 X17,5,18,4 X5,19,6,18 X19,7,20,6 X7,21,8,20 X21,9,22,8 X9,23,10,22 X23,11,24,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[13, 2]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[13, 2]] |
Out[3]= | 13 |
In[4]:= | PD[TorusKnot[13, 2]] |
Out[4]= | PD[X[11, 25, 12, 24], X[25, 13, 26, 12], X[13, 1, 14, 26], X[1, 15, 2, 14],
> X[15, 3, 16, 2], X[3, 17, 4, 16], X[17, 5, 18, 4], X[5, 19, 6, 18],
> X[19, 7, 20, 6], X[7, 21, 8, 20], X[21, 9, 22, 8], X[9, 23, 10, 22],
> X[23, 11, 24, 10]] |
In[5]:= | GaussCode[TorusKnot[13, 2]] |
Out[5]= | GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -1, 2, -3, 4, -5, 6, -7, 8,
> -9, 10, -11, 12, -13, 1, -2, 3] |
In[6]:= | BR[TorusKnot[13, 2]] |
Out[6]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[7]:= | alex = Alexander[TorusKnot[13, 2]][t] |
Out[7]= | -6 -5 -4 -3 -2 1 2 3 4 5 6
1 + t - t + t - t + t - - - t + t - t + t - t + t
t |
In[8]:= | Conway[TorusKnot[13, 2]][z] |
Out[8]= | 2 4 6 8 10 12
1 + 21 z + 70 z + 84 z + 45 z + 11 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[13, 2]], KnotSignature[TorusKnot[13, 2]]} |
Out[10]= | {13, 12} |
In[11]:= | J=Jones[TorusKnot[13, 2]][q] |
Out[11]= | 6 8 9 10 11 12 13 14 15 16 17 18 19
q + q - q + q - q + q - q + q - q + q - q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | ColouredJones[TorusKnot[13, 2], 2][q] |
Out[13]= | 12 15 17 18 20 21 23 24 26 27 29 30 32
q + q - q + q - q + q - q + q - q + q - q + q - q +
33 35 36 38 41 42 44 45 47 48 50 51
> q - q + q - q - q + q - q + q - q + q - q + q |
In[14]:= | A2Invariant[TorusKnot[13, 2]][q] |
Out[14]= | 22 24 26 28 30 50 52 54
q + q + 2 q + q + q - q - q - q |
In[15]:= | Kauffman[TorusKnot[13, 2]][a, z] |
Out[15]= | 2 2 2
6 7 z z z z z z 6 z z 2 z 3 z
--- + --- + --- - --- + --- - --- + --- - --- - --- + --- - ---- + ---- -
14 12 25 23 21 19 17 15 13 24 22 20
a a a a a a a a a a a a
2 2 2 2 3 3 3 3 3 3
4 z 5 z 41 z 56 z z 3 z 6 z 10 z 15 z 35 z
> ---- + ---- - ----- - ----- + --- - ---- + ---- - ----- + ----- + ----- +
18 16 14 12 23 21 19 17 15 13
a a a a a a a a a a
4 4 4 4 4 4 5 5 5 5
z 4 z 10 z 20 z 91 z 126 z z 5 z 15 z 35 z
> --- - ---- + ----- - ----- + ----- + ------ + --- - ---- + ----- - ----- -
22 20 18 16 14 12 21 19 17 15
a a a a a a a a a a
5 6 6 6 6 6 7 7 7 7
56 z z 6 z 21 z 92 z 120 z z 7 z 28 z 36 z
> ----- + --- - ---- + ----- - ----- - ------ + --- - ---- + ----- + ----- +
13 20 18 16 14 12 19 17 15 13
a a a a a a a a a a
8 8 8 8 9 9 9 10 10 10
z 8 z 46 z 55 z z 9 z 10 z z 11 z 12 z
> --- - ---- + ----- + ----- + --- - ---- - ----- + --- - ------ - ------ +
18 16 14 12 17 15 13 16 14 12
a a a a a a a a a a
11 11 12 12
z z z z
> --- + --- + --- + ---
15 13 14 12
a a a a |
In[16]:= | {Vassiliev[2][TorusKnot[13, 2]], Vassiliev[3][TorusKnot[13, 2]]} |
Out[16]= | {21, 91} |
In[17]:= | Kh[TorusKnot[13, 2]][q, t] |
Out[17]= | 11 13 15 2 19 3 19 4 23 5 23 6 27 7 27 8
q + q + q t + q t + q t + q t + q t + q t + q t +
31 9 31 10 35 11 35 12 39 13
> q t + q t + q t + q t + q t |