Next: 9 Lightly Documented Features
Up: 8 Extras
Previous: 8 Extras
  Contents
  Index
Subsections
In[2]:= ?TubePlot
In[3]:= Options[TubePlot]
|
Thus here's a thin unknot:
In[4]:= | Show[TubePlot[{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.1]] |
![]() | |
Out[4]= | -Graphics- |
In[5]:= ?TubeSubdivision
In[6]:= ?TubeFraming
In[7]:= ?TubePlotPrelude
|
Here's the same unknot, made thicker and not as smooth:
In[8]:= | Show[TubePlot[ {Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.3, TubeSubdivision -> {6, 3} ]] |
![]() | |
Out[8]= | -Graphics- |
Let's play with the framing now:
In[9]:= | Show[TubePlot[ {Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.2, TubeSubdivision -> {50, 2}, TubeFraming -> {Cos[2t]Cos[t], Cos[2t]Sin[t], Sin[3t]} ]] |
![]() | |
Out[9]= | -Graphics- |
Here's an example that uses a prelude and passes options on to Graphics3D:
In[10]:= | Show[TubePlot[ {Cos[2t], Sin[2t], 0} + 0.5{Cos[3t]Cos[2t], Cos[3t]Sin[2t], -Sin[3t]}, {t, 0, 2Pi}, 1/3, TubeSubdivision -> {280, 12}, TubeFraming -> {0,0,1}, TubePlotPrelude -> EdgeForm[{}], Boxed -> False, ViewPoint -> {0,0,1} ]] |
![]() | |
Out[10]= | -Graphics- |
The last example serves as the basis for the definition of TubePlot[TorusKnot[m, n]]. Here's a final example:
In[11]:= | Show[TubePlot[TorusKnot[3, 5]]] |
![]() | |
Out[11]= | -Graphics- |
There may be some independent interest in the routine TubePlot, and hence it is available also as an independent package. Here it is: TubePlot.m.