© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(7,2)
T(7,2)
T(9,2)
T(9,2)
T(4,3)
TubePlot
This page is passe. Go here instead!

   The 8-Crossing Torus Knot T(4,3)

Visit T(4,3)'s page at Knotilus!

Acknowledgement

PD Presentation: X5,11,6,10 X16,12,1,11 X1726 X12,8,13,7 X13,3,14,2 X8493 X9,15,10,14 X4,16,5,15

Gauss Code: {-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2}

Braid Representative:    

Alexander Polynomial: t-3 - t-2 + 1 - t2 + t3

Conway Polynomial: 1 + 5z2 + 5z4 + z6

Other knots with the same Alexander/Conway Polynomial: {819, ...}

Determinant and Signature: {3, 6}

Jones Polynomial: q3 + q5 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {819, ...}

Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): q6 + q9 + q12 - q13 - q16 - q19 + q20 - q22 + q23

A2 (sl(3)) Invariant: q10 + q12 + 2q14 + 2q16 + 2q18 - q22 - 2q24 - 2q26 - q28 + q32

Kauffman Polynomial: - a-10 + 5a-9z - 5a-9z3 + a-9z5 - 5a-8 + 10a-8z2 - 6a-8z4 + a-8z6 + 5a-7z - 5a-7z3 + a-7z5 - 5a-6 + 10a-6z2 - 6a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, 10}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of T(4,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345χ
17     1-1
15     1-1
13   11 0
11    1 1
9  1   1
71     1
51     1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[4, 3]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[4, 3]]
Out[3]=   
8
In[4]:=
PD[TorusKnot[4, 3]]
Out[4]=   
PD[X[5, 11, 6, 10], X[16, 12, 1, 11], X[1, 7, 2, 6], X[12, 8, 13, 7], 
 
>   X[13, 3, 14, 2], X[8, 4, 9, 3], X[9, 15, 10, 14], X[4, 16, 5, 15]]
In[5]:=
GaussCode[TorusKnot[4, 3]]
Out[5]=   
GaussCode[-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2]
In[6]:=
BR[TorusKnot[4, 3]]
Out[6]=   
BR[3, {1, 2, 1, 2, 1, 2, 1, 2}]
In[7]:=
alex = Alexander[TorusKnot[4, 3]][t]
Out[7]=   
     -3    -2    2    3
1 + t   - t   - t  + t
In[8]:=
Conway[TorusKnot[4, 3]][z]
Out[8]=   
       2      4    6
1 + 5 z  + 5 z  + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{Knot[8, 19]}
In[10]:=
{KnotDet[TorusKnot[4, 3]], KnotSignature[TorusKnot[4, 3]]}
Out[10]=   
{3, 6}
In[11]:=
J=Jones[TorusKnot[4, 3]][q]
Out[11]=   
 3    5    8
q  + q  - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{Knot[8, 19]}
In[13]:=
ColouredJones[TorusKnot[4, 3], 2][q]
Out[13]=   
 6    9    12    13    16    19    20    22    23
q  + q  + q   - q   - q   - q   + q   - q   + q
In[14]:=
A2Invariant[TorusKnot[4, 3]][q]
Out[14]=   
 10    12      14      16      18    22      24      26    28    32
q   + q   + 2 q   + 2 q   + 2 q   - q   - 2 q   - 2 q   - q   + q
In[15]:=
Kauffman[TorusKnot[4, 3]][a, z]
Out[15]=   
                                  2       2      3      3      4      4    5
  -10   5    5    5 z   5 z   10 z    10 z    5 z    5 z    6 z    6 z    z
-a    - -- - -- + --- + --- + ----- + ----- - ---- - ---- - ---- - ---- + -- + 
         8    6    9     7      8       6       9      7      8      6     9
        a    a    a     a      a       a       a      a      a      a     a
 
     5    6    6
    z    z    z
>   -- + -- + --
     7    8    6
    a    a    a
In[16]:=
{Vassiliev[2][TorusKnot[4, 3]], Vassiliev[3][TorusKnot[4, 3]]}
Out[16]=   
{5, 10}
In[17]:=
Kh[TorusKnot[4, 3]][q, t]
Out[17]=   
 5    7    9  2    13  3    11  4    13  4    15  5    17  5
q  + q  + q  t  + q   t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(4,3)
T(7,2)
T(7,2)
T(9,2)
T(9,2)