© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 949Visit 949's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 949's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X12,8,13,7 X5,15,6,14 X3,11,4,10 X11,3,12,2 X15,5,16,4 X17,9,18,8 X9,17,10,16 X18,14,1,13 |
Gauss Code: | {1, 5, -4, 6, -3, -1, 2, 7, -8, 4, -5, -2, 9, 3, -6, 8, -7, -9} |
DT (Dowker-Thistlethwaite) Code: | 6 -10 -14 12 -16 -2 18 -4 -8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-2 - 6t-1 + 7 - 6t + 3t2 |
Conway Polynomial: | 1 + 6z2 + 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {25, 4} |
Jones Polynomial: | q2 - 2q3 + 4q4 - 4q5 + 5q6 - 4q7 + 3q8 - 2q9 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q6 - q8 + q10 + q14 + 3q16 + q18 + 2q20 - q22 - q24 - q26 - 2q28 |
HOMFLY-PT Polynomial: | - 3a-8 - 2a-8z2 + 4a-6 + 6a-6z2 + 2a-6z4 + 2a-4z2 + a-4z4 |
Kauffman Polynomial: | - 4a-11z + 3a-11z3 - a-10z2 + a-10z6 - 2a-9z + 3a-9z3 - a-9z5 + a-9z7 - 3a-8 + 10a-8z2 - 9a-8z4 + 4a-8z6 + 2a-7z - 3a-7z3 + a-7z5 + a-7z7 - 4a-6 + 9a-6z2 - 8a-6z4 + 3a-6z6 - 3a-5z3 + 2a-5z5 - 2a-4z2 + a-4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {6, 14} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 949. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q4 - 2q5 + q6 + 6q7 - 8q8 - 3q9 + 16q10 - 11q11 - 10q12 + 25q13 - 11q14 - 17q15 + 27q16 - 9q17 - 17q18 + 21q19 - 3q20 - 13q21 + 10q22 + q23 - 6q24 + 2q25 + q26 |
3 | q6 - 2q7 + q8 + 3q9 + q10 - 8q11 - 3q12 + 13q13 + 12q14 - 18q15 - 21q16 + 14q17 + 39q18 - 14q19 - 48q20 + 2q21 + 64q22 + 5q23 - 70q24 - 18q25 + 80q26 + 22q27 - 78q28 - 33q29 + 80q30 + 33q31 - 72q32 - 40q33 + 65q34 + 40q35 - 51q36 - 40q37 + 35q38 + 39q39 - 22q40 - 31q41 + 8q42 + 24q43 - 2q44 - 12q45 - 5q46 + 9q47 + q48 - 2q50 |
4 | q8 - 2q9 + q10 + 3q11 - 2q12 + q13 - 9q14 + 3q15 + 15q16 + 5q18 - 35q19 - 13q20 + 30q21 + 25q22 + 44q23 - 63q24 - 65q25 + q26 + 46q27 + 137q28 - 43q29 - 122q30 - 84q31 + 19q32 + 240q33 + 31q34 - 137q35 - 181q36 - 50q37 + 309q38 + 110q39 - 117q40 - 248q41 - 116q42 + 333q43 + 162q44 - 86q45 - 276q46 - 158q47 + 324q48 + 187q49 - 52q50 - 269q51 - 183q52 + 274q53 + 192q54 - q55 - 226q56 - 196q57 + 182q58 + 168q59 + 59q60 - 142q61 - 180q62 + 70q63 + 105q64 + 90q65 - 46q66 - 120q67 - 5q68 + 31q69 + 65q70 + 12q71 - 45q72 - 18q73 - 7q74 + 21q75 + 14q76 - 5q77 - 4q78 - 6q79 + 2q81 + q82 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 49]] |
Out[2]= | PD[X[6, 2, 7, 1], X[12, 8, 13, 7], X[5, 15, 6, 14], X[3, 11, 4, 10], > X[11, 3, 12, 2], X[15, 5, 16, 4], X[17, 9, 18, 8], X[9, 17, 10, 16], > X[18, 14, 1, 13]] |
In[3]:= | GaussCode[Knot[9, 49]] |
Out[3]= | GaussCode[1, 5, -4, 6, -3, -1, 2, 7, -8, 4, -5, -2, 9, 3, -6, 8, -7, -9] |
In[4]:= | DTCode[Knot[9, 49]] |
Out[4]= | DTCode[6, -10, -14, 12, -16, -2, 18, -4, -8] |
In[5]:= | br = BR[Knot[9, 49]] |
Out[5]= | BR[4, {1, 1, 2, 1, 1, -3, 2, -1, 2, 3, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 49]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 49]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 49]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 2, 3, {4, 5}, 2} |
In[10]:= | alex = Alexander[Knot[9, 49]][t] |
Out[10]= | 3 6 2 7 + -- - - - 6 t + 3 t 2 t t |
In[11]:= | Conway[Knot[9, 49]][z] |
Out[11]= | 2 4 1 + 6 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 49]} |
In[13]:= | {KnotDet[Knot[9, 49]], KnotSignature[Knot[9, 49]]} |
Out[13]= | {25, 4} |
In[14]:= | Jones[Knot[9, 49]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 q - 2 q + 4 q - 4 q + 5 q - 4 q + 3 q - 2 q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 49]} |
In[16]:= | A2Invariant[Knot[9, 49]][q] |
Out[16]= | 6 8 10 14 16 18 20 22 24 26 28 q - q + q + q + 3 q + q + 2 q - q - q - q - 2 q |
In[17]:= | HOMFLYPT[Knot[9, 49]][a, z] |
Out[17]= | 2 2 2 4 4 -3 4 2 z 6 z 2 z 2 z z -- + -- - ---- + ---- + ---- + ---- + -- 8 6 8 6 4 6 4 a a a a a a a |
In[18]:= | Kauffman[Knot[9, 49]][a, z] |
Out[18]= | 2 2 2 2 3 3 3 -3 4 4 z 2 z 2 z z 10 z 9 z 2 z 3 z 3 z 3 z -- - -- - --- - --- + --- - --- + ----- + ---- - ---- + ---- + ---- - ---- - 8 6 11 9 7 10 8 6 4 11 9 7 a a a a a a a a a a a a 3 4 4 4 5 5 5 6 6 6 7 7 3 z 9 z 8 z z z z 2 z z 4 z 3 z z z > ---- - ---- - ---- + -- - -- + -- + ---- + --- + ---- + ---- + -- + -- 5 8 6 4 9 7 5 10 8 6 9 7 a a a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[9, 49]], Vassiliev[3][Knot[9, 49]]} |
Out[19]= | {6, 14} |
In[20]:= | Kh[Knot[9, 49]][q, t] |
Out[20]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 q + q + 2 q t + 2 q t + 2 q t + 2 q t + 2 q t + 3 q t + 13 4 13 5 15 5 15 6 17 6 19 7 > 2 q t + q t + 3 q t + 2 q t + q t + 2 q t |
In[21]:= | ColouredJones[Knot[9, 49], 2][q] |
Out[21]= | 4 5 6 7 8 9 10 11 12 13 q - 2 q + q + 6 q - 8 q - 3 q + 16 q - 11 q - 10 q + 25 q - 14 15 16 17 18 19 20 21 > 11 q - 17 q + 27 q - 9 q - 17 q + 21 q - 3 q - 13 q + 22 23 24 25 26 > 10 q + q - 6 q + 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 949 |
|