© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 947Visit 947's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 947's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,8,17,7 X8394 X2,15,3,16 X14,9,15,10 X10,6,11,5 X4,14,5,13 X11,1,12,18 X17,13,18,12 |
Gauss Code: | {1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 6 8 10 16 14 -18 4 2 -12 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 4t-2 + 6t-1 - 5 + 6t - 4t2 + t3 |
Conway Polynomial: | 1 - z2 + 2z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {27, 2} |
Jones Polynomial: | - q-2 + 3q-1 - 3 + 5q - 5q2 + 4q3 - 4q4 + 2q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-6 + q-4 + q-2 + 2 + 2q2 - q4 + q6 - 2q8 - q12 - q14 + q16 + q20 |
HOMFLY-PT Polynomial: | a-6 - 2a-4 - 3a-4z2 - a-4z4 + a-2 + 4a-2z2 + 4a-2z4 + a-2z6 + 1 - 2z2 - z4 |
Kauffman Polynomial: | - a-6 + 3a-6z2 - 3a-5z + 3a-5z3 + a-5z5 - 2a-4 + 9a-4z2 - 7a-4z4 + 3a-4z6 - 5a-3z + 6a-3z3 - 4a-3z5 + 2a-3z7 - a-2 + 11a-2z2 - 16a-2z4 + 6a-2z6 - 2a-1z + a-1z3 - 4a-1z5 + 2a-1z7 + 1 + 5z2 - 9z4 + 3z6 - 2az3 + az5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 947. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-7 - 3q-6 - q-5 + 9q-4 - 6q-3 - 8q-2 + 17q-1 - 3 - 18q + 20q2 + 2q3 - 25q4 + 19q5 + 8q6 - 25q7 + 14q8 + 10q9 - 17q10 + 6q11 + 6q12 - 6q13 + q15 |
3 | - q-15 + 3q-14 + q-13 - 5q-12 - 7q-11 + 6q-10 + 17q-9 - 5q-8 - 23q-7 - 6q-6 + 32q-5 + 17q-4 - 28q-3 - 35q-2 + 26q-1 + 43 - 10q - 60q2 + 3q3 + 60q4 + 16q5 - 69q6 - 25q7 + 70q8 + 37q9 - 70q10 - 46q11 + 69q12 + 51q13 - 58q14 - 59q15 + 50q16 + 54q17 - 32q18 - 51q19 + 19q20 + 37q21 - 4q22 - 25q23 - 3q24 + 15q25 + q26 - 2q27 - 4q28 + 2q29 |
4 | q-26 - 3q-25 - q-24 + 5q-23 + 3q-22 + 7q-21 - 16q-20 - 15q-19 + 3q-18 + 11q-17 + 46q-16 - 12q-15 - 38q-14 - 33q-13 - 21q-12 + 88q-11 + 39q-10 - 3q-9 - 60q-8 - 115q-7 + 56q-6 + 77q-5 + 98q-4 - 7q-3 - 192q-2 - 47q-1 + 32 + 190q + 115q2 - 193q3 - 149q4 - 72q5 + 227q6 + 236q7 - 145q8 - 214q9 - 173q10 + 228q11 + 321q12 - 92q13 - 254q14 - 245q15 + 217q16 + 374q17 - 38q18 - 276q19 - 297q20 + 185q21 + 392q22 + 28q23 - 248q24 - 319q25 + 100q26 + 344q27 + 100q28 - 150q29 - 278q30 - 7q31 + 215q32 + 118q33 - 30q34 - 161q35 - 58q36 + 73q37 + 68q38 + 23q39 - 46q40 - 34q41 + 5q42 + 14q43 + 12q44 - 3q45 - 6q46 + q48 |
5 | - q-40 + 3q-39 + q-38 - 5q-37 - 3q-36 - 3q-35 + 3q-34 + 14q-33 + 18q-32 - 5q-31 - 24q-30 - 33q-29 - 21q-28 + 17q-27 + 61q-26 + 66q-25 + 5q-24 - 61q-23 - 101q-22 - 82q-21 + 17q-20 + 132q-19 + 153q-18 + 71q-17 - 71q-16 - 209q-15 - 213q-14 - 34q-13 + 192q-12 + 318q-11 + 224q-10 - 78q-9 - 392q-8 - 410q-7 - 114q-6 + 336q-5 + 593q-4 + 367q-3 - 224q-2 - 674q-1 - 619 - 15q + 714q2 + 858q3 + 231q4 - 630q5 - 1028q6 - 516q7 + 546q8 + 1161q9 + 721q10 - 404q11 - 1226q12 - 944q13 + 290q14 + 1287q15 + 1083q16 - 173q17 - 1314q18 - 1221q19 + 84q20 + 1349q21 + 1323q22 - 15q23 - 1369q24 - 1406q25 - 65q26 + 1373q27 + 1495q28 + 145q29 - 1351q30 - 1542q31 - 270q32 + 1268q33 + 1590q34 + 397q35 - 1124q36 - 1549q37 - 563q38 + 904q39 + 1466q40 + 675q41 - 637q42 - 1255q43 - 755q44 + 338q45 + 1010q46 + 727q47 - 95q48 - 691q49 - 626q50 - 83q51 + 404q52 + 472q53 + 154q54 - 192q55 - 283q56 - 151q57 + 42q58 + 154q59 + 111q60 - 8q61 - 49q62 - 51q63 - 21q64 + 19q65 + 21q66 + 3q67 - 2q68 - 2q69 - 4q70 + 2q71 |
6 | q-57 - 3q-56 - q-55 + 5q-54 + 3q-53 + 3q-52 - 7q-51 - q-50 - 17q-49 - 16q-48 + 17q-47 + 25q-46 + 39q-45 + 10q-44 + 12q-43 - 62q-42 - 94q-41 - 48q-40 - 2q-39 + 89q-38 + 103q-37 + 186q-36 + 28q-35 - 118q-34 - 196q-33 - 236q-32 - 124q-31 - 15q-30 + 360q-29 + 368q-28 + 284q-27 + 48q-26 - 284q-25 - 536q-24 - 684q-23 - 126q-22 + 271q-21 + 759q-20 + 881q-19 + 578q-18 - 195q-17 - 1184q-16 - 1199q-15 - 917q-14 + 161q-13 + 1247q-12 + 1925q-11 + 1362q-10 - 320q-9 - 1547q-8 - 2423q-7 - 1695q-6 + 68q-5 + 2319q-4 + 3078q-3 + 1775q-2 - 290q-1 - 2831 - 3594q - 2236q2 + 1147q3 + 3677q4 + 3828q5 + 1944q6 - 1809q7 - 4462q8 - 4434q9 - 844q10 + 3060q11 + 4979q12 + 4030q13 - 152q14 - 4346q15 - 5850q16 - 2664q17 + 1991q18 + 5347q19 + 5430q20 + 1292q21 - 3894q22 - 6593q23 - 3892q24 + 1127q25 + 5439q26 + 6240q27 + 2217q28 - 3574q29 - 7027q30 - 4638q31 + 612q32 + 5549q33 + 6777q34 + 2818q35 - 3392q36 - 7358q37 - 5253q38 + 139q39 + 5580q40 + 7244q41 + 3523q42 - 2940q43 - 7440q44 - 5949q45 - 767q46 + 5032q47 + 7418q48 + 4511q49 - 1701q50 - 6680q51 - 6367q52 - 2186q53 + 3386q54 + 6574q55 + 5213q56 + 244q57 - 4594q58 - 5637q59 - 3303q60 + 970q61 + 4325q62 + 4634q63 + 1792q64 - 1819q65 - 3524q66 - 3059q67 - 829q68 + 1631q69 + 2748q70 + 1873q71 + 77q72 - 1225q73 - 1656q74 - 1075q75 + 32q76 + 897q77 + 935q78 + 445q79 - 65q80 - 434q81 - 477q82 - 220q83 + 92q84 + 204q85 + 162q86 + 78q87 - 18q88 - 83q89 - 64q90 - 7q91 + 12q92 + 14q93 + 11q94 + 6q95 - 3q96 - 6q97 + q99 |
7 | - q-77 + 3q-76 + q-75 - 5q-74 - 3q-73 - 3q-72 + 7q-71 + 5q-70 + 4q-69 + 15q-68 + 4q-67 - 18q-66 - 30q-65 - 42q-64 - 12q-63 + 21q-62 + 32q-61 + 90q-60 + 84q-59 + 42q-58 - 30q-57 - 152q-56 - 175q-55 - 140q-54 - 96q-53 + 88q-52 + 236q-51 + 332q-50 + 360q-49 + 94q-48 - 146q-47 - 368q-46 - 605q-45 - 529q-44 - 303q-43 + 138q-42 + 734q-41 + 926q-40 + 907q-39 + 579q-38 - 256q-37 - 970q-36 - 1589q-35 - 1648q-34 - 772q-33 + 318q-32 + 1629q-31 + 2579q-30 + 2355q-29 + 1299q-28 - 721q-27 - 2888q-26 - 3781q-25 - 3472q-24 - 1381q-23 + 1803q-22 + 4371q-21 + 5691q-20 + 4387q-19 + 670q-18 - 3494q-17 - 6944q-16 - 7487q-15 - 4385q-14 + 794q-13 + 6668q-12 + 9890q-11 + 8477q-10 + 3309q-9 - 4404q-8 - 10696q-7 - 12190q-6 - 8266q-5 + 496q-4 + 9688q-3 + 14552q-2 + 13133q-1 + 4661 - 6824q - 15407q2 - 17269q3 - 10035q4 + 2675q5 + 14458q6 + 20080q7 + 15299q8 + 2229q9 - 12361q10 - 21648q11 - 19589q12 - 7100q13 + 9245q14 + 21943q15 + 23066q16 + 11708q17 - 6000q18 - 21539q19 - 25433q20 - 15509q21 + 2746q22 + 20527q23 + 27138q24 + 18678q25 + 19q26 - 19533q27 - 28182q28 - 20988q29 - 2320q30 + 18523q31 + 28917q32 + 22811q33 + 4011q34 - 17828q35 - 29454q36 - 24091q37 - 5240q38 + 17342q39 + 29948q40 + 25133q41 + 6142q42 - 17103q43 - 30510q44 - 26075q45 - 6870q46 + 16987q47 + 31078q48 + 27068q49 + 7756q50 - 16723q51 - 31718q52 - 28287q53 - 8934q54 + 16131q55 + 32091q56 + 29642q57 + 10730q58 - 14775q59 - 32019q60 - 31045q61 - 13064q62 + 12461q63 + 30941q64 + 32023q65 + 15921q66 - 8988q67 - 28605q68 - 32143q69 - 18666q70 + 4578q71 + 24610q72 + 30785q73 + 20885q74 + 351q75 - 19347q76 - 27727q77 - 21648q78 - 4888q79 + 13091q80 + 22927q81 + 20776q82 + 8363q83 - 6983q84 - 17161q85 - 17999q86 - 9990q87 + 1803q88 + 11087q89 + 13991q90 + 9855q91 + 1670q92 - 5881q93 - 9574q94 - 8154q95 - 3244q96 + 2098q97 + 5505q98 + 5762q99 + 3396q100 + 49q101 - 2611q102 - 3461q103 - 2516q104 - 812q105 + 791q106 + 1653q107 + 1567q108 + 846q109 - 75q110 - 649q111 - 725q112 - 489q113 - 160q114 + 144q115 + 278q116 + 246q117 + 109q118 - 28q119 - 68q120 - 70q121 - 47q122 - 13q123 + 15q124 + 19q125 + 15q126 - 2q128 - 2q129 - 4q130 + 2q131 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 47]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[8, 3, 9, 4], X[2, 15, 3, 16], > X[14, 9, 15, 10], X[10, 6, 11, 5], X[4, 14, 5, 13], X[11, 1, 12, 18], > X[17, 13, 18, 12]] |
In[3]:= | GaussCode[Knot[9, 47]] |
Out[3]= | GaussCode[1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8] |
In[4]:= | DTCode[Knot[9, 47]] |
Out[4]= | DTCode[6, 8, 10, 16, 14, -18, 4, 2, -12] |
In[5]:= | br = BR[Knot[9, 47]] |
Out[5]= | BR[4, {-1, 2, -1, 2, 3, 2, -1, 2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 47]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 47]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 47]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, {4, 6}, 2} |
In[10]:= | alex = Alexander[Knot[9, 47]][t] |
Out[10]= | -3 4 6 2 3 -5 + t - -- + - + 6 t - 4 t + t 2 t t |
In[11]:= | Conway[Knot[9, 47]][z] |
Out[11]= | 2 4 6 1 - z + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 47]} |
In[13]:= | {KnotDet[Knot[9, 47]], KnotSignature[Knot[9, 47]]} |
Out[13]= | {27, 2} |
In[14]:= | Jones[Knot[9, 47]][q] |
Out[14]= | -2 3 2 3 4 5 -3 - q + - + 5 q - 5 q + 4 q - 4 q + 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 47]} |
In[16]:= | A2Invariant[Knot[9, 47]][q] |
Out[16]= | -6 -4 -2 2 4 6 8 12 14 16 20 2 - q + q + q + 2 q - q + q - 2 q - q - q + q + q |
In[17]:= | HOMFLYPT[Knot[9, 47]][a, z] |
Out[17]= | 2 2 4 4 6 -6 2 -2 2 3 z 4 z 4 z 4 z z 1 + a - -- + a - 2 z - ---- + ---- - z - -- + ---- + -- 4 4 2 4 2 2 a a a a a a |
In[18]:= | Kauffman[Knot[9, 47]][a, z] |
Out[18]= | 2 2 2 3 -6 2 -2 3 z 5 z 2 z 2 3 z 9 z 11 z 3 z 1 - a - -- - a - --- - --- - --- + 5 z + ---- + ---- + ----- + ---- + 4 5 3 a 6 4 2 5 a a a a a a a 3 3 4 4 5 5 5 6 z z 3 4 7 z 16 z z 4 z 4 z 5 6 > ---- + -- - 2 a z - 9 z - ---- - ----- + -- - ---- - ---- + a z + 3 z + 3 a 4 2 5 3 a a a a a a 6 6 7 7 3 z 6 z 2 z 2 z > ---- + ---- + ---- + ---- 4 2 3 a a a a |
In[19]:= | {Vassiliev[2][Knot[9, 47]], Vassiliev[3][Knot[9, 47]]} |
Out[19]= | {-1, -2} |
In[20]:= | Kh[Knot[9, 47]][q, t] |
Out[20]= | 3 1 2 1 1 2 q 3 5 5 2 4 q + 2 q + ----- + ----- + ---- + --- + --- + 2 q t + 3 q t + 2 q t + 5 3 3 2 2 q t t q t q t q t 7 2 7 3 9 3 11 4 > 2 q t + 2 q t + 2 q t + 2 q t |
In[21]:= | ColouredJones[Knot[9, 47], 2][q] |
Out[21]= | -7 3 -5 9 6 8 17 2 3 4 5 -3 + q - -- - q + -- - -- - -- + -- - 18 q + 20 q + 2 q - 25 q + 19 q + 6 4 3 2 q q q q q 6 7 8 9 10 11 12 13 15 > 8 q - 25 q + 14 q + 10 q - 17 q + 6 q + 6 q - 6 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 947 |
|