© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 942Visit 942's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 942's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17 |
Gauss Code: | {-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 -14 2 -16 -18 -6 -12 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-2 + 2t-1 - 1 + 2t - t2 |
Conway Polynomial: | 1 - 2z2 - z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {7, 2} |
Jones Polynomial: | q-3 - q-2 + q-1 - 1 + q - q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-10 + q-8 + q-6 - q-2 - 1 - q2 + q6 + q8 + q10 |
HOMFLY-PT Polynomial: | 2a-2 + a-2z2 - 3 - 4z2 - z4 + 2a2 + a2z2 |
Kauffman Polynomial: | - 2a-2 + 6a-2z2 - 5a-2z4 + a-2z6 - 2a-1z + 6a-1z3 - 5a-1z5 + a-1z7 - 3 + 12z2 - 10z4 + 2z6 - 2az + 6az3 - 5az5 + az7 - 2a2 + 6a2z2 - 5a2z4 + a2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 942. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-10 - q-9 - q-8 + 2q-7 - q-6 - q-5 + 2q-4 - q-3 + q-1 - 1 + q - q3 + 2q4 - q5 - q6 + 2q7 - q8 - q9 + q10 |
3 | q-21 - q-20 - q-19 + 2q-17 - 2q-15 + 2q-13 - 2q-11 + q-10 + 2q-9 - 2q-8 - 2q-7 + 2q-6 + 3q-5 - 3q-4 - 3q-3 + 3q-2 + 4q-1 - 3 - 4q + 3q2 + 5q3 - 3q4 - 5q5 + 3q6 + 5q7 - 4q8 - 5q9 + 4q10 + 5q11 - 3q12 - 4q13 + 2q14 + 4q15 - 2q16 - 2q17 + q19 |
4 | q-36 - q-35 - q-34 + 3q-31 - q-30 - q-29 - q-28 - q-27 + 4q-26 - q-25 - q-24 - q-23 + 4q-21 - 2q-20 - 3q-19 - q-18 + 2q-17 + 5q-16 - q-15 - 5q-14 - 2q-13 + 2q-12 + 6q-11 + q-10 - 6q-9 - 2q-8 + 5q-6 + 3q-5 - 5q-4 - q-3 - 2q-2 + 3q-1 + 4 - 4q + q2 - 3q3 + q4 + 5q5 - 3q6 + 2q7 - 4q8 - q9 + 6q10 - 3q11 + 3q12 - 5q13 - 2q14 + 7q15 - 3q16 + 3q17 - 5q18 - 3q19 + 6q20 - q21 + 4q22 - 4q23 - 3q24 + 3q25 - q26 + 3q27 - q28 - q29 - q31 + q32 |
5 | q-55 - q-54 - q-53 + q-50 + 2q-49 - 2q-47 - q-46 - q-45 + q-44 + 2q-43 + q-42 - q-41 - 2q-40 - q-39 + 2q-38 + 2q-37 - 2q-35 - 4q-34 + 4q-32 + 4q-31 + q-30 - 3q-29 - 6q-28 - 2q-27 + 4q-26 + 5q-25 + 3q-24 - 2q-23 - 6q-22 - 3q-21 + 2q-20 + 4q-19 + 2q-18 - q-17 - 3q-16 - q-15 + 2q-14 + 2q-13 - q-12 - 3q-11 - q-10 + 2q-9 + 4q-8 + 3q-7 - 4q-6 - 6q-5 - 2q-4 + 4q-3 + 7q-2 + 4q-1 - 5 - 9q - 4q2 + 5q3 + 10q4 + 6q5 - 6q6 - 11q7 - 6q8 + 6q9 + 12q10 + 7q11 - 7q12 - 13q13 - 6q14 + 7q15 + 13q16 + 6q17 - 8q18 - 13q19 - 5q20 + 8q21 + 13q22 + 5q23 - 8q24 - 13q25 - 5q26 + 8q27 + 13q28 + 5q29 - 7q30 - 12q31 - 6q32 + 5q33 + 11q34 + 5q35 - 3q36 - 7q37 - 5q38 + 5q40 + 4q41 - q43 - 2q44 - q45 + q47 |
6 | q-78 - q-77 - q-76 + q-73 + 3q-71 - q-70 - 2q-69 - q-68 - q-67 + 5q-64 - q-63 - q-62 - q-61 - q-60 - q-59 + 6q-57 - 2q-56 - 2q-55 - 2q-54 - 2q-53 + 3q-51 + 8q-50 - q-49 - 3q-48 - 3q-47 - 6q-46 - 2q-45 + 4q-44 + 9q-43 + q-42 - q-41 - q-40 - 8q-39 - 3q-38 + 2q-37 + 8q-36 - q-35 - q-34 + 2q-33 - 7q-32 + q-31 + 3q-30 + 8q-29 - 5q-28 - 5q-27 - 8q-25 + 5q-24 + 7q-23 + 12q-22 - 5q-21 - 7q-20 - 5q-19 - 12q-18 + 4q-17 + 8q-16 + 17q-15 - q-14 - 4q-13 - 8q-12 - 16q-11 + 5q-9 + 19q-8 + 4q-7 + 2q-6 - 8q-5 - 17q-4 - 5q-3 + 18q-1 + 7 + 8q - 6q2 - 16q3 - 9q4 - 5q5 + 16q6 + 9q7 + 13q8 - 5q9 - 15q10 - 12q11 - 8q12 + 14q13 + 11q14 + 17q15 - 5q16 - 15q17 - 14q18 - 10q19 + 14q20 + 13q21 + 19q22 - 6q23 - 15q24 - 14q25 - 11q26 + 14q27 + 13q28 + 19q29 - 7q30 - 15q31 - 14q32 - 11q33 + 13q34 + 14q35 + 20q36 - 5q37 - 13q38 - 16q39 - 12q40 + 9q41 + 13q42 + 20q43 - q44 - 7q45 - 14q46 - 13q47 + 2q48 + 7q49 + 14q50 + 2q51 - 6q53 - 7q54 - 2q55 + q56 + 4q57 + q58 + 3q59 - q60 - q61 - q62 - q65 + q66 |
7 | q-105 - q-104 - q-103 + q-100 + q-98 + 2q-97 - q-96 - 2q-95 - q-94 - 2q-93 + q-92 + q-90 + 4q-89 - q-87 - q-86 - 3q-85 + q-82 + 4q-81 - q-80 - q-79 - q-78 - 4q-77 - q-76 + 2q-75 + 4q-74 + 6q-73 - 2q-71 - 3q-70 - 7q-69 - 4q-68 + 5q-66 + 8q-65 + 4q-64 - 2q-62 - 6q-61 - 6q-60 - 2q-59 + 2q-58 + 6q-57 + 4q-56 - 2q-54 - 3q-53 - 3q-52 + q-51 + 4q-50 + 5q-49 + 3q-48 - 5q-47 - 7q-46 - 6q-45 - 4q-44 + 4q-43 + 10q-42 + 10q-41 + 7q-40 - 4q-39 - 11q-38 - 11q-37 - 11q-36 + 10q-34 + 13q-33 + 12q-32 + 3q-31 - 6q-30 - 10q-29 - 14q-28 - 7q-27 + 4q-26 + 7q-25 + 11q-24 + 8q-23 + q-22 - 2q-21 - 9q-20 - 8q-19 - 2q-18 - q-17 + 3q-16 + 5q-15 + 3q-14 + 6q-13 + q-12 - 3q-11 - 2q-10 - 6q-9 - 6q-8 - 3q-7 + 9q-5 + 10q-4 + 5q-3 + 3q-2 - 7q-1 - 14 - 10q - 6q2 + 9q3 + 16q4 + 13q5 + 9q6 - 7q7 - 19q8 - 17q9 - 11q10 + 8q11 + 21q12 + 19q13 + 13q14 - 7q15 - 24q16 - 22q17 - 14q18 + 9q19 + 25q20 + 22q21 + 15q22 - 9q23 - 27q24 - 24q25 - 14q26 + 11q27 + 28q28 + 23q29 + 14q30 - 11q31 - 29q32 - 23q33 - 13q34 + 12q35 + 29q36 + 22q37 + 13q38 - 12q39 - 29q40 - 22q41 - 13q42 + 13q43 + 29q44 + 23q45 + 12q46 - 13q47 - 31q48 - 24q49 - 12q50 + 13q51 + 30q52 + 25q53 + 15q54 - 10q55 - 30q56 - 27q57 - 15q58 + 8q59 + 24q60 + 23q61 + 18q62 + q63 - 20q64 - 22q65 - 15q66 - q67 + 9q68 + 11q69 + 15q70 + 7q71 - 4q72 - 9q73 - 7q74 - 5q75 - q76 + q77 + 4q78 + 5q79 + q80 - q82 - q83 - q84 - q85 + q87 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 42]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], X[18, 14, 1, 13], > X[12, 18, 13, 17]] |
In[3]:= | GaussCode[Knot[9, 42]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8] |
In[4]:= | DTCode[Knot[9, 42]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, -16, -18, -6, -12] |
In[5]:= | br = BR[Knot[9, 42]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 42]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 42]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 42]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[9, 42]][t] |
Out[10]= | -2 2 2 -1 - t + - + 2 t - t t |
In[11]:= | Conway[Knot[9, 42]][z] |
Out[11]= | 2 4 1 - 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 42]} |
In[13]:= | {KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]} |
Out[13]= | {7, 2} |
In[14]:= | Jones[Knot[9, 42]][q] |
Out[14]= | -3 -2 1 2 3 -1 + q - q + - + q - q + q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 42]} |
In[16]:= | A2Invariant[Knot[9, 42]][q] |
Out[16]= | -10 -8 -6 -2 2 6 8 10 -1 + q + q + q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[9, 42]][a, z] |
Out[17]= | 2 2 2 2 z 2 2 4 -3 + -- + 2 a - 4 z + -- + a z - z 2 2 a a |
In[18]:= | Kauffman[Knot[9, 42]][a, z] |
Out[18]= | 2 3 2 2 2 z 2 6 z 2 2 6 z 3 4 -3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + 6 a z - 10 z - 2 a 2 a a a 4 5 6 7 5 z 2 4 5 z 5 6 z 2 6 z 7 > ---- - 5 a z - ---- - 5 a z + 2 z + -- + a z + -- + a z 2 a 2 a a a |
In[19]:= | {Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[9, 42]][q, t] |
Out[20]= | 1 3 1 1 1 1 q 3 7 2 - + q + q + ----- + ----- + ----- + --- + - + q t + q t q 7 4 3 3 3 2 q t t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 42], 2][q] |
Out[21]= | -10 -9 -8 2 -6 -5 2 -3 1 3 4 5 -1 + q - q - q + -- - q - q + -- - q + - + q - q + 2 q - q - 7 4 q q q 6 7 8 9 10 > q + 2 q - q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 942 |
|