© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 821Visit 821's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 821's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283 |
Gauss Code: | {-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -12 2 14 -6 16 10 |
Minimum Braid Representative:
Length is 8, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-2 + 4t-1 - 5 + 4t - t2 |
Conway Polynomial: | 1 - z4 |
Other knots with the same Alexander/Conway Polynomial: | {10136, ...} |
Determinant and Signature: | {15, -2} |
Jones Polynomial: | q-7 - 2q-6 + 2q-5 - 3q-4 + 3q-3 - 2q-2 + 2q-1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - 2q-14 - q-12 - q-10 + q-8 + 2q-6 + q-4 + 2q-2 |
HOMFLY-PT Polynomial: | 3a2 + 2a2z2 - 3a4 - 3a4z2 - a4z4 + a6 + a6z2 |
Kauffman Polynomial: | - 3a2 + 3a2z2 + 2a3z - a3z3 + a3z5 - 3a4 + 5a4z2 - 2a4z4 + a4z6 + 4a5z - 6a5z3 + 3a5z5 - a6 - a6z4 + a6z6 + 2a7z - 5a7z3 + 2a7z5 - 2a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 821. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 2q-19 - q-18 + 5q-17 - 3q-16 - 4q-15 + 8q-14 - 2q-13 - 8q-12 + 10q-11 - q-10 - 10q-9 + 10q-8 - 8q-6 + 6q-5 + q-4 - 4q-3 + 2q-2 + q-1 |
3 | q-39 - 2q-38 - q-37 + 2q-36 + 4q-35 - 2q-34 - 7q-33 + q-32 + 9q-31 + 2q-30 - 11q-29 - 6q-28 + 11q-27 + 11q-26 - 12q-25 - 13q-24 + 10q-23 + 19q-22 - 11q-21 - 20q-20 + 9q-19 + 22q-18 - 9q-17 - 23q-16 + 8q-15 + 21q-14 - 4q-13 - 21q-12 + 4q-11 + 15q-10 + q-9 - 13q-8 + 6q-6 + 4q-5 - 6q-4 + 2q-1 |
4 | q-64 - 2q-63 - q-62 + 2q-61 + q-60 + 5q-59 - 6q-58 - 5q-57 + 17q-54 - 4q-53 - 9q-52 - 8q-51 - 10q-50 + 27q-49 + 7q-48 - q-47 - 15q-46 - 31q-45 + 26q-44 + 18q-43 + 17q-42 - 15q-41 - 52q-40 + 16q-39 + 23q-38 + 37q-37 - 10q-36 - 67q-35 + 7q-34 + 25q-33 + 51q-32 - 5q-31 - 76q-30 + 25q-28 + 58q-27 - 2q-26 - 77q-25 - 6q-24 + 22q-23 + 57q-22 + 4q-21 - 66q-20 - 13q-19 + 12q-18 + 48q-17 + 12q-16 - 44q-15 - 14q-14 - q-13 + 29q-12 + 15q-11 - 18q-10 - 9q-9 - 7q-8 + 10q-7 + 9q-6 - 3q-5 - 2q-4 - 4q-3 + 2q-1 + 1 |
5 | q-95 - 2q-94 - q-93 + 2q-92 + q-91 + 2q-90 + q-89 - 4q-88 - 7q-87 + 4q-85 + 7q-84 + 8q-83 - 12q-81 - 15q-80 - 4q-79 + 8q-78 + 20q-77 + 19q-76 - 2q-75 - 23q-74 - 30q-73 - 13q-72 + 17q-71 + 40q-70 + 34q-69 - 6q-68 - 46q-67 - 53q-66 - 14q-65 + 44q-64 + 75q-63 + 35q-62 - 38q-61 - 85q-60 - 64q-59 + 28q-58 + 101q-57 + 80q-56 - 14q-55 - 104q-54 - 105q-53 + 2q-52 + 115q-51 + 115q-50 + 7q-49 - 113q-48 - 133q-47 - 15q-46 + 121q-45 + 138q-44 + 20q-43 - 120q-42 - 145q-41 - 25q-40 + 120q-39 + 150q-38 + 29q-37 - 119q-36 - 146q-35 - 36q-34 + 107q-33 + 150q-32 + 43q-31 - 101q-30 - 136q-29 - 51q-28 + 76q-27 + 132q-26 + 55q-25 - 61q-24 - 106q-23 - 60q-22 + 31q-21 + 91q-20 + 57q-19 - 20q-18 - 53q-17 - 52q-16 - 7q-15 + 43q-14 + 37q-13 + 5q-12 - 10q-11 - 25q-10 - 17q-9 + 9q-8 + 14q-7 + 4q-6 + 6q-5 - 6q-4 - 6q-3 - 2q-2 + 2q-1 + 2q |
6 | q-132 - 2q-131 - q-130 + 2q-129 + q-128 + 2q-127 - 2q-126 + 3q-125 - 6q-124 - 7q-123 + 3q-122 + 3q-121 + 8q-120 + q-119 + 13q-118 - 10q-117 - 17q-116 - 8q-115 - 6q-114 + 8q-113 + 4q-112 + 43q-111 + 7q-110 - 14q-109 - 21q-108 - 32q-107 - 22q-106 - 22q-105 + 64q-104 + 46q-103 + 33q-102 + 4q-101 - 35q-100 - 72q-99 - 100q-98 + 30q-97 + 54q-96 + 98q-95 + 84q-94 + 29q-93 - 86q-92 - 190q-91 - 65q-90 - 7q-89 + 121q-88 + 174q-87 + 152q-86 - 35q-85 - 235q-84 - 170q-83 - 120q-82 + 86q-81 + 228q-80 + 281q-79 + 56q-78 - 231q-77 - 244q-76 - 234q-75 + 23q-74 + 245q-73 + 379q-72 + 140q-71 - 208q-70 - 288q-69 - 315q-68 - 30q-67 + 247q-66 + 443q-65 + 193q-64 - 192q-63 - 313q-62 - 360q-61 - 58q-60 + 247q-59 + 477q-58 + 221q-57 - 182q-56 - 326q-55 - 382q-54 - 75q-53 + 241q-52 + 488q-51 + 239q-50 - 160q-49 - 324q-48 - 390q-47 - 100q-46 + 215q-45 + 473q-44 + 258q-43 - 109q-42 - 292q-41 - 377q-40 - 140q-39 + 151q-38 + 414q-37 + 263q-36 - 30q-35 - 209q-34 - 320q-33 - 173q-32 + 52q-31 + 295q-30 + 229q-29 + 46q-28 - 90q-27 - 211q-26 - 165q-25 - 36q-24 + 146q-23 + 147q-22 + 75q-21 + 5q-20 - 86q-19 - 104q-18 - 65q-17 + 35q-16 + 54q-15 + 49q-14 + 34q-13 - 9q-12 - 34q-11 - 38q-10 - 5q-9 + 6q-8 + 11q-7 + 16q-6 + 9q-5 - 3q-4 - 8q-3 - 4q-2 - 2q-1 + 2q2 + q3 |
7 | q-175 - 2q-174 - q-173 + 2q-172 + q-171 + 2q-170 - 2q-169 + q-167 - 6q-166 - 4q-165 + 2q-164 + 3q-163 + 10q-162 + 3q-161 - q-160 + 6q-159 - 12q-158 - 14q-157 - 11q-156 - 8q-155 + 17q-154 + 15q-153 + 12q-152 + 29q-151 + 2q-150 - 15q-149 - 29q-148 - 54q-147 - 12q-146 - q-145 + 14q-144 + 69q-143 + 56q-142 + 44q-141 + 3q-140 - 78q-139 - 78q-138 - 87q-137 - 69q-136 + 45q-135 + 92q-134 + 147q-133 + 146q-132 + 15q-131 - 65q-130 - 178q-129 - 232q-128 - 119q-127 - 7q-126 + 173q-125 + 315q-124 + 236q-123 + 117q-122 - 123q-121 - 353q-120 - 352q-119 - 269q-118 + 24q-117 + 361q-116 + 454q-115 + 415q-114 + 113q-113 - 311q-112 - 524q-111 - 572q-110 - 268q-109 + 245q-108 + 552q-107 + 694q-106 + 432q-105 - 136q-104 - 564q-103 - 813q-102 - 572q-101 + 40q-100 + 546q-99 + 879q-98 + 711q-97 + 70q-96 - 527q-95 - 954q-94 - 812q-93 - 139q-92 + 499q-91 + 985q-90 + 897q-89 + 220q-88 - 482q-87 - 1032q-86 - 956q-85 - 255q-84 + 468q-83 + 1043q-82 + 1000q-81 + 299q-80 - 461q-79 - 1068q-78 - 1032q-77 - 314q-76 + 455q-75 + 1075q-74 + 1051q-73 + 336q-72 - 446q-71 - 1078q-70 - 1072q-69 - 359q-68 + 436q-67 + 1082q-66 + 1078q-65 + 378q-64 - 406q-63 - 1056q-62 - 1093q-61 - 424q-60 + 372q-59 + 1036q-58 + 1086q-57 + 451q-56 - 303q-55 - 964q-54 - 1072q-53 - 512q-52 + 224q-51 + 886q-50 + 1023q-49 + 541q-48 - 115q-47 - 745q-46 - 954q-45 - 578q-44 + 6q-43 + 601q-42 + 832q-41 + 563q-40 + 115q-39 - 415q-38 - 691q-37 - 546q-36 - 187q-35 + 257q-34 + 510q-33 + 454q-32 + 249q-31 - 83q-30 - 357q-29 - 376q-28 - 240q-27 + 3q-26 + 188q-25 + 236q-24 + 223q-23 + 83q-22 - 87q-21 - 161q-20 - 151q-19 - 74q-18 + 8q-17 + 55q-16 + 98q-15 + 81q-14 + 17q-13 - 25q-12 - 45q-11 - 37q-10 - 23q-9 - 9q-8 + 15q-7 + 24q-6 + 16q-5 + 4q-4 - 6q-2 - 4q-1 - 6 - 2q + 2q3 + 2q5 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[8, 21]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 16, 14, 1], > X[9, 14, 10, 15], X[15, 10, 16, 11], X[6, 12, 7, 11], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[8, 21]] |
Out[3]= | GaussCode[-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4] |
In[4]:= | DTCode[Knot[8, 21]] |
Out[4]= | DTCode[4, 8, -12, 2, 14, -6, 16, 10] |
In[5]:= | br = BR[Knot[8, 21]] |
Out[5]= | BR[3, {-1, -1, -1, -2, 1, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 21]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 21]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[8, 21]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[8, 21]][t] |
Out[10]= | -2 4 2 -5 - t + - + 4 t - t t |
In[11]:= | Conway[Knot[8, 21]][z] |
Out[11]= | 4 1 - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 21], Knot[10, 136]} |
In[13]:= | {KnotDet[Knot[8, 21]], KnotSignature[Knot[8, 21]]} |
Out[13]= | {15, -2} |
In[14]:= | Jones[Knot[8, 21]][q] |
Out[14]= | -7 2 2 3 3 2 2 q - -- + -- - -- + -- - -- + - 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 21]} |
In[16]:= | A2Invariant[Knot[8, 21]][q] |
Out[16]= | -22 2 -12 -10 -8 2 -4 2 q - --- - q - q + q + -- + q + -- 14 6 2 q q q |
In[17]:= | HOMFLYPT[Knot[8, 21]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 4 4 3 a - 3 a + a + 2 a z - 3 a z + a z - a z |
In[18]:= | Kauffman[Knot[8, 21]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 2 4 2 8 2 -3 a - 3 a - a + 2 a z + 4 a z + 2 a z + 3 a z + 5 a z - 2 a z - 3 3 5 3 7 3 4 4 6 4 8 4 3 5 5 5 > a z - 6 a z - 5 a z - 2 a z - a z + a z + a z + 3 a z + 7 5 4 6 6 6 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 21]], Vassiliev[3][Knot[8, 21]]} |
Out[19]= | {0, 1} |
In[20]:= | Kh[Knot[8, 21]][q, t] |
Out[20]= | -3 2 1 1 1 1 1 2 1 1 q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q t q t q t q t q t q t q t q t 2 1 1 > ----- + ---- + ---- 5 2 5 3 q t q t q t |
In[21]:= | ColouredJones[Knot[8, 21], 2][q] |
Out[21]= | -20 2 -18 5 3 4 8 2 8 10 -10 10 10 q - --- - q + --- - --- - --- + --- - --- - --- + --- - q - -- + -- - 19 17 16 15 14 13 12 11 9 8 q q q q q q q q q q 8 6 -4 4 2 1 > -- + -- + q - -- + -- + - 6 5 3 2 q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 821 |
|