© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 72Visit 72's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X5,14,6,1 X7,12,8,13 X11,8,12,9 X13,6,14,7 X9,2,10,3 |
Gauss Code: | {-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3} |
DT (Dowker-Thistlethwaite) Code: | 4 10 14 12 2 8 6 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-1 - 5 + 3t |
Conway Polynomial: | 1 + 3z2 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {11, -2} |
Jones Polynomial: | - q-8 + q-7 - q-6 + 2q-5 - 2q-4 + 2q-3 - q-2 + q-1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n88, ...} |
A2 (sl(3)) Invariant: | - q-26 - q-24 + q-18 + q-16 + q-8 + q-6 + q-2 |
HOMFLY-PT Polynomial: | a2 + a2z2 + a4z2 + a6 + a6z2 - a8 |
Kauffman Polynomial: | - a2 + a2z2 + a3z3 + a4z4 - a5z3 + a5z5 - a6 + 3a6z2 - 3a6z4 + a6z6 + 3a7z - 6a7z3 + 2a7z5 - a8 + 4a8z2 - 4a8z4 + a8z6 + 3a9z - 4a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, -6} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 72. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - q-22 - q-21 + 2q-20 - q-19 - 2q-18 + 3q-17 - 3q-15 + 3q-14 - 4q-12 + 3q-11 + q-10 - 4q-9 + 3q-8 + q-7 - 2q-6 + 2q-5 - q-3 + q-2 |
3 | - q-45 + q-44 + q-43 - 2q-41 + 2q-39 + q-38 - 3q-37 - q-36 + 2q-35 + 2q-34 - 2q-33 - 2q-32 + 2q-31 + 2q-30 - q-29 - 2q-28 + q-27 + q-26 - 2q-24 + q-22 + q-21 - 2q-20 - q-19 + q-18 + 2q-17 - 2q-16 + q-13 - q-12 + q-11 - q-8 + 2q-7 - q-4 + q-3 |
4 | q-74 - q-73 - q-72 + 3q-69 - q-68 - q-67 - q-66 - 2q-65 + 5q-64 - q-62 - q-61 - 4q-60 + 5q-59 - 5q-55 + 5q-54 - q-53 + q-51 - 4q-50 + 6q-49 - 3q-48 - q-47 + 2q-46 - 3q-45 + 7q-44 - 5q-43 - 3q-42 + 3q-41 - 2q-40 + 8q-39 - 6q-38 - 4q-37 + 4q-36 - q-35 + 8q-34 - 7q-33 - 5q-32 + 5q-31 + 7q-29 - 8q-28 - 5q-27 + 4q-26 + 8q-24 - 6q-23 - 5q-22 + 2q-21 + 7q-19 - 3q-18 - 3q-17 + q-16 - 2q-15 + 5q-14 - q-13 - q-12 - 2q-10 + 3q-9 - q-5 + q-4 |
5 | - q-110 + q-109 + q-108 - q-105 - 2q-104 + 2q-102 + q-101 + q-100 - 3q-98 - 2q-97 + q-96 + 2q-95 + 2q-94 + q-93 - 2q-92 - 3q-91 + q-89 + 2q-88 + q-87 - q-86 - 2q-85 + q-83 + q-82 - 2q-80 - 2q-79 + 2q-78 + 3q-77 + q-76 - 2q-75 - 4q-74 - 2q-73 + 3q-72 + 6q-71 + 3q-70 - 4q-69 - 7q-68 - 3q-67 + 3q-66 + 8q-65 + 5q-64 - 5q-63 - 9q-62 - 5q-61 + 4q-60 + 10q-59 + 7q-58 - 5q-57 - 10q-56 - 7q-55 + 4q-54 + 12q-53 + 8q-52 - 6q-51 - 11q-50 - 8q-49 + 5q-48 + 14q-47 + 7q-46 - 7q-45 - 12q-44 - 8q-43 + 5q-42 + 15q-41 + 7q-40 - 7q-39 - 12q-38 - 8q-37 + 2q-36 + 15q-35 + 8q-34 - 4q-33 - 11q-32 - 7q-31 + 11q-29 + 6q-28 - 2q-27 - 6q-26 - 5q-25 - q-24 + 7q-23 + 3q-22 - q-21 - 2q-20 - 2q-19 - 2q-18 + 4q-17 + 2q-16 - q-15 - q-13 - 2q-12 + 2q-11 + q-10 - q-6 + q-5 |
6 | q-153 - q-152 - q-151 + q-148 + 3q-146 - q-145 - 2q-144 - q-143 - q-142 - q-140 + 6q-139 - q-137 - q-136 - 2q-135 - q-134 - 4q-133 + 7q-132 + q-131 - q-128 - q-127 - 6q-126 + 7q-125 - q-122 + q-120 - 6q-119 + 8q-118 - 4q-115 - 2q-114 + q-113 - 5q-112 + 11q-111 + 2q-110 + q-109 - 7q-108 - 5q-107 - q-106 - 6q-105 + 14q-104 + 6q-103 + 4q-102 - 8q-101 - 7q-100 - 4q-99 - 9q-98 + 15q-97 + 9q-96 + 7q-95 - 7q-94 - 8q-93 - 7q-92 - 13q-91 + 14q-90 + 11q-89 + 10q-88 - 5q-87 - 7q-86 - 8q-85 - 17q-84 + 12q-83 + 13q-82 + 13q-81 - 3q-80 - 7q-79 - 9q-78 - 20q-77 + 9q-76 + 15q-75 + 16q-74 - 2q-73 - 7q-72 - 10q-71 - 22q-70 + 8q-69 + 17q-68 + 18q-67 - 3q-66 - 8q-65 - 11q-64 - 22q-63 + 8q-62 + 19q-61 + 19q-60 - 3q-59 - 9q-58 - 12q-57 - 22q-56 + 8q-55 + 18q-54 + 19q-53 - q-52 - 8q-51 - 12q-50 - 23q-49 + 6q-48 + 15q-47 + 17q-46 + q-45 - 5q-44 - 9q-43 - 19q-42 + 4q-41 + 10q-40 + 12q-39 - 3q-37 - 4q-36 - 13q-35 + 5q-34 + 6q-33 + 6q-32 - 2q-31 - 2q-30 - q-29 - 8q-28 + 5q-27 + 3q-26 + 3q-25 - 2q-24 - q-23 - 5q-21 + 4q-20 + q-19 + 2q-18 - q-17 - 3q-14 + 2q-13 + q-11 - q-7 + q-6 |
7 | - q-203 + q-202 + q-201 - q-198 - q-196 - 2q-195 + q-194 + 2q-193 + q-192 + 2q-191 - q-190 - 5q-187 - q-186 + q-185 + q-184 + 4q-183 + q-181 + 2q-180 - 5q-179 - 2q-178 - q-177 - 2q-176 + 5q-175 + q-173 + 4q-172 - 4q-171 - q-170 - q-169 - 3q-168 + 5q-167 - q-165 + 3q-164 - 5q-163 - 3q-160 + 8q-159 + 2q-158 - q-157 + 2q-156 - 8q-155 - 3q-154 - 2q-153 - 3q-152 + 11q-151 + 6q-150 + 2q-149 + 4q-148 - 10q-147 - 8q-146 - 6q-145 - 6q-144 + 11q-143 + 9q-142 + 6q-141 + 9q-140 - 8q-139 - 10q-138 - 9q-137 - 11q-136 + 8q-135 + 9q-134 + 9q-133 + 13q-132 - 4q-131 - 8q-130 - 9q-129 - 15q-128 + 2q-127 + 6q-126 + 9q-125 + 15q-124 - q-123 - 3q-122 - 6q-121 - 17q-120 - 3q-119 + q-118 + 7q-117 + 16q-116 + 3q-115 + 2q-114 - 3q-113 - 16q-112 - 7q-111 - 4q-110 + 3q-109 + 17q-108 + 6q-107 + 6q-106 - 16q-104 - 10q-103 - 8q-102 + 17q-100 + 10q-99 + 10q-98 + q-97 - 17q-96 - 13q-95 - 10q-94 - 2q-93 + 17q-92 + 14q-91 + 12q-90 - 18q-88 - 14q-87 - 10q-86 - 2q-85 + 18q-84 + 17q-83 + 12q-82 - 2q-81 - 19q-80 - 15q-79 - 10q-78 - q-77 + 19q-76 + 18q-75 + 12q-74 - q-73 - 20q-72 - 16q-71 - 11q-70 - 2q-69 + 17q-68 + 17q-67 + 14q-66 + 2q-65 - 17q-64 - 15q-63 - 13q-62 - 4q-61 + 13q-60 + 13q-59 + 12q-58 + 5q-57 - 11q-56 - 9q-55 - 10q-54 - 4q-53 + 7q-52 + 6q-51 + 7q-50 + 2q-49 - 7q-48 - q-47 - 3q-46 - 2q-45 + 4q-44 + q-43 + q-42 - q-41 - 6q-40 + 4q-39 + q-38 + q-37 + 3q-36 - 2q-35 - q-34 - q-33 - 5q-32 + 3q-31 + 2q-30 + 2q-29 + 2q-28 - 2q-27 - q-26 - 4q-24 + 2q-23 + q-22 + q-21 + 2q-20 - q-19 - 2q-16 + q-15 + q-12 - q-8 + q-7 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[7, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 1], X[7, 12, 8, 13], > X[11, 8, 12, 9], X[13, 6, 14, 7], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[7, 2]] |
Out[3]= | GaussCode[-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3] |
In[4]:= | DTCode[Knot[7, 2]] |
Out[4]= | DTCode[4, 10, 14, 12, 2, 8, 6] |
In[5]:= | br = BR[Knot[7, 2]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[7, 2]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 2]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[7, 2]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[7, 2]][t] |
Out[10]= | 3 -5 + - + 3 t t |
In[11]:= | Conway[Knot[7, 2]][z] |
Out[11]= | 2 1 + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 2]} |
In[13]:= | {KnotDet[Knot[7, 2]], KnotSignature[Knot[7, 2]]} |
Out[13]= | {11, -2} |
In[14]:= | Jones[Knot[7, 2]][q] |
Out[14]= | -8 -7 -6 2 2 2 -2 1 -q + q - q + -- - -- + -- - q + - 5 4 3 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 2], Knot[11, NonAlternating, 88]} |
In[16]:= | A2Invariant[Knot[7, 2]][q] |
Out[16]= | -26 -24 -18 -16 -8 -6 -2 -q - q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[7, 2]][a, z] |
Out[17]= | 2 6 8 2 2 4 2 6 2 a + a - a + a z + a z + a z |
In[18]:= | Kauffman[Knot[7, 2]][a, z] |
Out[18]= | 2 6 8 7 9 2 2 6 2 8 2 3 3 5 3 -a - a - a + 3 a z + 3 a z + a z + 3 a z + 4 a z + a z - a z - 7 3 9 3 4 4 6 4 8 4 5 5 7 5 9 5 > 6 a z - 4 a z + a z - 3 a z - 4 a z + a z + 2 a z + a z + 6 6 8 6 > a z + a z |
In[19]:= | {Vassiliev[2][Knot[7, 2]], Vassiliev[3][Knot[7, 2]]} |
Out[19]= | {3, -6} |
In[20]:= | Kh[Knot[7, 2]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 1 1 1 q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 7 2 q t q t q t q t q t q t q t q t 1 1 > ----- + ---- 5 2 3 q t q t |
In[21]:= | ColouredJones[Knot[7, 2], 2][q] |
Out[21]= | -23 -22 -21 2 -19 2 3 3 3 4 3 -10 q - q - q + --- - q - --- + --- - --- + --- - --- + --- + q - 20 18 17 15 14 12 11 q q q q q q q 4 3 -7 2 2 -3 -2 > -- + -- + q - -- + -- - q + q 9 8 6 5 q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 72 |
|