© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1093Visit 1093's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1093's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,6,17,5 X20,8,1,7 X18,13,19,14 X14,9,15,10 X10,3,11,4 X4,11,5,12 X12,17,13,18 X8,20,9,19 X2,16,3,15 |
Gauss Code: | {1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8, -4, 9, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 10 16 20 14 4 18 2 12 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 8t-2 + 15t-1 - 17 + 15t - 8t2 + 2t3 |
Conway Polynomial: | 1 + z2 + 4z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {67, -2} |
Jones Polynomial: | - q-6 + 3q-5 - 6q-4 + 9q-3 - 10q-2 + 11q-1 - 10 + 8q - 5q2 + 3q3 - q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-18 + q-16 - q-14 - q-12 + 2q-10 - q-8 + 3q-6 + 1 - 2q2 + 2q4 + q10 - q12 |
HOMFLY-PT Polynomial: | - 2a-2z2 - a-2z4 + 2z2 + 3z4 + z6 + 2a2 + 3a2z2 + 3a2z4 + a2z6 - a4 - 2a4z2 - a4z4 |
Kauffman Polynomial: | - 2a-3z + 5a-3z3 - 4a-3z5 + a-3z7 - 6a-2z2 + 17a-2z4 - 13a-2z6 + 3a-2z8 - 6a-1z + 18a-1z3 - 10a-1z5 - 3a-1z7 + 2a-1z9 - 6z2 + 28z4 - 31z6 + 9z8 - 6az + 25az3 - 29az5 + 5az7 + 2az9 - 2a2 + 7a2z2 - 6a2z4 - 9a2z6 + 6a2z8 - a3z + 7a3z3 - 17a3z5 + 9a3z7 - a4 + 7a4z2 - 14a4z4 + 9a4z6 + a5z - 4a5z3 + 6a5z5 + 3a6z4 + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1093. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 3q-16 + 3q-15 + 3q-14 - 14q-13 + 16q-12 + 4q-11 - 35q-10 + 39q-9 + 7q-8 - 63q-7 + 57q-6 + 21q-5 - 85q-4 + 54q-3 + 41q-2 - 88q-1 + 35 + 52q - 71q2 + 11q3 + 48q4 - 42q5 - 6q6 + 31q7 - 14q8 - 9q9 + 11q10 - q11 - 3q12 + q13 |
3 | - q-33 + 3q-32 - 3q-31 + 2q-29 + 2q-28 - 7q-27 + q-26 + 13q-25 - 10q-24 - 21q-23 + 29q-22 + 32q-21 - 58q-20 - 55q-19 + 97q-18 + 93q-17 - 139q-16 - 140q-15 + 161q-14 + 205q-13 - 172q-12 - 253q-11 + 142q-10 + 303q-9 - 106q-8 - 318q-7 + 44q-6 + 326q-5 + 9q-4 - 304q-3 - 72q-2 + 282q-1 + 117 - 240q - 162q2 + 196q3 + 190q4 - 137q5 - 209q6 + 80q7 + 202q8 - 15q9 - 183q10 - 31q11 + 138q12 + 66q13 - 91q14 - 74q15 + 44q16 + 64q17 - 11q18 - 43q19 - 6q20 + 23q21 + 9q22 - 9q23 - 5q24 + q25 + 3q26 - q27 |
4 | q-54 - 3q-53 + 3q-52 - 5q-50 + 10q-49 - 11q-48 + 8q-47 - 3q-46 - 12q-45 + 39q-44 - 40q-43 + q-42 - q-41 + 8q-40 + 115q-39 - 127q-38 - 95q-37 - 10q-36 + 156q-35 + 353q-34 - 293q-33 - 439q-32 - 164q-31 + 469q-30 + 940q-29 - 348q-28 - 1042q-27 - 697q-26 + 673q-25 + 1824q-24 + 10q-23 - 1501q-22 - 1515q-21 + 389q-20 + 2489q-19 + 688q-18 - 1383q-17 - 2092q-16 - 277q-15 + 2511q-14 + 1195q-13 - 796q-12 - 2102q-11 - 885q-10 + 2042q-9 + 1310q-8 - 149q-7 - 1742q-6 - 1241q-5 + 1432q-4 + 1197q-3 + 403q-2 - 1264q-1 - 1447 + 776q + 990q2 + 889q3 - 682q4 - 1488q5 + 70q6 + 584q7 + 1191q8 + 26q9 - 1177q10 - 489q11 - 49q12 + 1055q13 + 601q14 - 505q15 - 576q16 - 593q17 + 489q18 + 681q19 + 124q20 - 203q21 - 655q22 - 59q23 + 316q24 + 297q25 + 164q26 - 323q27 - 199q28 - 20q29 + 121q30 + 200q31 - 40q32 - 75q33 - 77q34 - 15q35 + 74q36 + 18q37 + 4q38 - 21q39 - 19q40 + 9q41 + 3q42 + 5q43 - q44 - 3q45 + q46 |
5 | - q-80 + 3q-79 - 3q-78 + 5q-76 - 7q-75 - q-74 + 10q-73 - 6q-72 - 4q-71 + 7q-70 - 8q-69 + 5q-68 + 23q-67 - 19q-66 - 46q-65 - 6q-64 + 54q-63 + 101q-62 + 38q-61 - 152q-60 - 278q-59 - 76q-58 + 363q-57 + 596q-56 + 197q-55 - 687q-54 - 1202q-53 - 505q-52 + 1149q-51 + 2213q-50 + 1134q-49 - 1678q-48 - 3654q-47 - 2296q-46 + 2039q-45 + 5542q-44 + 4140q-43 - 2009q-42 - 7605q-41 - 6671q-40 + 1260q-39 + 9464q-38 + 9698q-37 + 387q-36 - 10704q-35 - 12830q-34 - 2759q-33 + 10948q-32 + 15431q-31 + 5669q-30 - 10111q-29 - 17228q-28 - 8438q-27 + 8442q-26 + 17753q-25 + 10751q-24 - 6227q-23 - 17348q-22 - 12189q-21 + 4053q-20 + 16041q-19 + 12845q-18 - 2098q-17 - 14452q-16 - 12805q-15 + 580q-14 + 12692q-13 + 12452q-12 + 683q-11 - 11120q-10 - 11949q-9 - 1745q-8 + 9512q-7 + 11522q-6 + 2905q-5 - 7972q-4 - 11067q-3 - 4104q-2 + 6142q-1 + 10507 + 5447q - 4124q2 - 9612q3 - 6628q4 + 1777q5 + 8244q6 + 7503q7 + 628q8 - 6314q9 - 7739q10 - 2894q11 + 3939q12 + 7185q13 + 4603q14 - 1309q15 - 5808q16 - 5542q17 - 1078q18 + 3786q19 + 5416q20 + 2941q21 - 1490q22 - 4437q23 - 3846q24 - 556q25 + 2756q26 + 3782q27 + 2015q28 - 978q29 - 2908q30 - 2568q31 - 514q32 + 1614q33 + 2340q34 + 1365q35 - 376q36 - 1586q37 - 1538q38 - 465q39 + 708q40 + 1197q41 + 812q42 - 23q43 - 677q44 - 740q45 - 307q46 + 202q47 + 463q48 + 371q49 + 62q50 - 207q51 - 253q52 - 129q53 + 22q54 + 123q55 + 115q56 + 27q57 - 41q58 - 48q59 - 31q60 - 6q61 + 24q62 + 17q63 + q64 - 3q65 - 3q66 - 5q67 + q68 + 3q69 - q70 |
6 | q-111 - 3q-110 + 3q-109 - 5q-107 + 7q-106 - 2q-105 + 2q-104 - 12q-103 + 13q-102 + 9q-101 - 32q-100 + 19q-99 + q-98 + 2q-97 - 8q-96 + 47q-95 + 8q-94 - 140q-93 - 4q-92 + 41q-91 + 98q-90 + 128q-89 + 145q-88 - 161q-87 - 638q-86 - 251q-85 + 256q-84 + 782q-83 + 964q-82 + 450q-81 - 1076q-80 - 2623q-79 - 1556q-78 + 881q-77 + 3493q-76 + 4399q-75 + 1900q-74 - 3789q-73 - 8844q-72 - 6742q-71 + 1149q-70 + 10516q-69 + 14801q-68 + 8304q-67 - 7771q-66 - 22953q-65 - 21967q-64 - 4029q-63 + 21177q-62 + 36934q-61 + 27722q-60 - 5939q-59 - 43133q-58 - 52471q-57 - 24938q-56 + 25304q-55 + 66556q-54 + 65121q-53 + 14490q-52 - 55019q-51 - 90391q-50 - 65639q-49 + 7736q-48 + 84731q-47 + 108329q-46 + 55848q-45 - 41784q-44 - 112822q-43 - 109773q-42 - 31220q-41 + 74597q-40 + 132025q-39 + 98093q-38 - 7096q-37 - 104791q-36 - 131746q-35 - 68995q-34 + 43660q-33 + 124960q-32 + 117454q-31 + 25482q-30 - 77564q-29 - 125207q-28 - 85458q-27 + 15029q-26 + 101514q-25 + 112681q-24 + 40469q-23 - 52531q-22 - 106456q-21 - 83866q-20 - 484q-19 + 80423q-18 + 100459q-17 + 44212q-16 - 36351q-15 - 90771q-14 - 79734q-13 - 10744q-12 + 64708q-11 + 92073q-10 + 49855q-9 - 20665q-8 - 77915q-7 - 80175q-6 - 26053q-5 + 45773q-4 + 84289q-3 + 60590q-2 + 2410q-1 - 58840 - 79226q - 46396q2 + 17310q3 + 67282q4 + 68012q5 + 30543q6 - 28022q7 - 66026q8 - 61270q9 - 16628q10 + 35865q11 + 60034q12 + 51329q13 + 8980q14 - 35657q15 - 57393q16 - 41619q17 - 2674q18 + 32157q19 + 50409q20 + 35598q21 + 2436q22 - 31230q23 - 42448q24 - 29444q25 - 3605q26 + 25837q27 + 36305q28 + 27183q29 + 2206q30 - 19470q31 - 29339q32 - 24547q33 - 4302q34 + 14471q35 + 24979q36 + 19415q37 + 6499q38 - 9175q39 - 19757q40 - 17038q41 - 7167q42 + 6295q43 + 13180q44 + 14542q45 + 7650q46 - 2996q47 - 9559q48 - 11243q49 - 6301q50 - 429q51 + 6419q52 + 8418q53 + 5626q54 + 1116q55 - 3550q56 - 5186q57 - 5153q58 - 1471q59 + 1731q60 + 3403q61 + 3332q62 + 1619q63 - 210q64 - 2284q65 - 2108q66 - 1313q67 - 75q68 + 906q69 + 1287q70 + 1123q71 + 78q72 - 345q73 - 671q74 - 558q75 - 285q76 + 107q77 + 399q78 + 231q79 + 173q80 - 13q81 - 103q82 - 163q83 - 87q84 + 25q85 + 17q86 + 54q87 + 32q88 + 18q89 - 22q90 - 20q91 + q92 - 7q93 + 3q94 + 3q95 + 5q96 - q97 - 3q98 + q99 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 93]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[20, 8, 1, 7], X[18, 13, 19, 14], > X[14, 9, 15, 10], X[10, 3, 11, 4], X[4, 11, 5, 12], X[12, 17, 13, 18], > X[8, 20, 9, 19], X[2, 16, 3, 15]] |
In[3]:= | GaussCode[Knot[10, 93]] |
Out[3]= | GaussCode[1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8, -4, 9, > -3] |
In[4]:= | DTCode[Knot[10, 93]] |
Out[4]= | DTCode[6, 10, 16, 20, 14, 4, 18, 2, 12, 8] |
In[5]:= | br = BR[Knot[10, 93]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -1, 2, -1, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 93]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 93]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 93]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 93]][t] |
Out[10]= | 2 8 15 2 3 -17 + -- - -- + -- + 15 t - 8 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 93]][z] |
Out[11]= | 2 4 6 1 + z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 93]} |
In[13]:= | {KnotDet[Knot[10, 93]], KnotSignature[Knot[10, 93]]} |
Out[13]= | {67, -2} |
In[14]:= | Jones[Knot[10, 93]][q] |
Out[14]= | -6 3 6 9 10 11 2 3 4 -10 - q + -- - -- + -- - -- + -- + 8 q - 5 q + 3 q - q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 93]} |
In[16]:= | A2Invariant[Knot[10, 93]][q] |
Out[16]= | -18 -16 -14 -12 2 -8 3 2 4 10 12 1 - q + q - q - q + --- - q + -- - 2 q + 2 q + q - q 10 6 q q |
In[17]:= | HOMFLYPT[Knot[10, 93]][a, z] |
Out[17]= | 2 4 2 4 2 2 z 2 2 4 2 4 z 2 4 4 4 2 a - a + 2 z - ---- + 3 a z - 2 a z + 3 z - -- + 3 a z - a z + 2 2 a a 6 2 6 > z + a z |
In[18]:= | Kauffman[Knot[10, 93]][a, z] |
Out[18]= | 2 2 4 2 z 6 z 3 5 2 6 z 2 2 -2 a - a - --- - --- - 6 a z - a z + a z - 6 z - ---- + 7 a z + 3 a 2 a a 3 3 4 2 5 z 18 z 3 3 3 5 3 7 3 4 > 7 a z + ---- + ----- + 25 a z + 7 a z - 4 a z + a z + 28 z + 3 a a 4 5 5 17 z 2 4 4 4 6 4 4 z 10 z 5 3 5 > ----- - 6 a z - 14 a z + 3 a z - ---- - ----- - 29 a z - 17 a z + 2 3 a a a 6 7 7 5 5 6 13 z 2 6 4 6 z 3 z 7 > 6 a z - 31 z - ----- - 9 a z + 9 a z + -- - ---- + 5 a z + 2 3 a a a 8 9 3 7 8 3 z 2 8 2 z 9 > 9 a z + 9 z + ---- + 6 a z + ---- + 2 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 93]], Vassiliev[3][Knot[10, 93]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[10, 93]][q, t] |
Out[20]= | 6 6 1 2 1 4 2 5 4 5 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 5 5 t 2 3 2 3 3 5 3 5 4 > ---- + --- + 5 q t + 3 q t + 5 q t + 2 q t + 3 q t + q t + 3 q q t 7 4 9 5 > 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 93], 2][q] |
Out[21]= | -17 3 3 3 14 16 4 35 39 7 63 57 21 35 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - 16 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 85 54 41 88 2 3 4 5 6 7 > -- + -- + -- - -- + 52 q - 71 q + 11 q + 48 q - 42 q - 6 q + 31 q - 4 3 2 q q q q 8 9 10 11 12 13 > 14 q - 9 q + 11 q - q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1093 |
|