© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.84
1084
10.86
1086
    10.85
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1085   

Visit 1085's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1085's page at Knotilus!

Acknowledgement

10.85
KnotPlot

PD Presentation: X6271 X16,6,17,5 X18,11,19,12 X14,7,15,8 X8394 X4,9,5,10 X20,13,1,14 X10,17,11,18 X12,19,13,20 X2,16,3,15

Gauss Code: {1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, -3, 9, -7}

DT (Dowker-Thistlethwaite) Code: 6 8 16 14 4 18 20 2 10 12

Minimum Braid Representative:


Length is 10, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Chiral 2 4 3 / NotAvailable 1

Alexander Polynomial: t-4 - 4t-3 + 8t-2 - 10t-1 + 11 - 10t + 8t2 - 4t3 + t4

Conway Polynomial: 1 + 2z2 + 4z4 + 4z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {57, -4}

Jones Polynomial: - q-9 + 3q-8 - 5q-7 + 7q-6 - 9q-5 + 9q-4 - 8q-3 + 7q-2 - 4q-1 + 3 - q

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-26 + q-24 - q-22 + q-20 - q-16 + q-14 - 3q-12 + 2q-10 + 2q-6 + 2q-4 + 1 - q2

HOMFLY-PT Polynomial: a2 - 3a2z2 - 4a2z4 - a2z6 + a4 + 9a4z2 + 12a4z4 + 6a4z6 + a4z8 - a6 - 4a6z2 - 4a6z4 - a6z6

Kauffman Polynomial: - az + 4az3 - 4az5 + az7 - a2 - 7a2z2 + 19a2z4 - 14a2z6 + 3a2z8 - 2a3z + 11a3z3 - 4a3z5 - 5a3z7 + 2a3z9 + a4 - 14a4z2 + 37a4z4 - 32a4z6 + 8a4z8 - 2a5z + 14a5z3 - 15a5z5 + 2a5z9 + a6 - 5a6z2 + 8a6z4 - 12a6z6 + 5a6z8 + 2a7z3 - 10a7z5 + 6a7z7 + a8z2 - 7a8z4 + 6a8z6 + a9z - 4a9z3 + 5a9z5 - a10z2 + 3a10z4 + a11z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1085. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 3          1
j = 1         2 
j = -1        21 
j = -3       52  
j = -5      43   
j = -7     54    
j = -9    44     
j = -11   35      
j = -13  24       
j = -15 13        
j = -17 2         
j = -191          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-25 - 3q-24 + 2q-23 + 5q-22 - 12q-21 + 8q-20 + 8q-19 - 24q-18 + 21q-17 + 9q-16 - 40q-15 + 32q-14 + 17q-13 - 54q-12 + 31q-11 + 29q-10 - 57q-9 + 20q-8 + 36q-7 - 47q-6 + 6q-5 + 35q-4 - 30q-3 - 5q-2 + 25q-1 - 11 - 8q + 10q2 - q3 - 3q4 + q5
3 - q-48 + 3q-47 - 2q-46 - 2q-45 + 7q-43 - q-42 - 11q-41 + q-40 + 10q-39 + 5q-38 - 8q-37 - 7q-36 - 6q-35 + 9q-34 + 28q-33 - 5q-32 - 53q-31 - 11q-30 + 77q-29 + 33q-28 - 88q-27 - 61q-26 + 88q-25 + 80q-24 - 67q-23 - 97q-22 + 43q-21 + 102q-20 - 15q-19 - 98q-18 - 17q-17 + 95q-16 + 38q-15 - 79q-14 - 69q-13 + 73q-12 + 81q-11 - 45q-10 - 104q-9 + 28q-8 + 101q-7 + 10q-6 - 104q-5 - 27q-4 + 77q-3 + 53q-2 - 56q-1 - 54 + 26q + 50q2 - 6q3 - 34q4 - 7q5 + 20q6 + 8q7 - 8q8 - 5q9 + q10 + 3q11 - q12
4 q-78 - 3q-77 + 2q-76 + 2q-75 - 3q-74 + 5q-73 - 14q-72 + 10q-71 + 10q-70 - 7q-69 + 11q-68 - 52q-67 + 21q-66 + 40q-65 + 13q-64 + 24q-63 - 147q-62 - 8q-61 + 93q-60 + 119q-59 + 91q-58 - 319q-57 - 162q-56 + 119q-55 + 350q-54 + 309q-53 - 494q-52 - 485q-51 - 13q-50 + 603q-49 + 712q-48 - 499q-47 - 815q-46 - 338q-45 + 645q-44 + 1098q-43 - 282q-42 - 898q-41 - 644q-40 + 437q-39 + 1218q-38 - 48q-37 - 716q-36 - 724q-35 + 171q-34 + 1091q-33 + 60q-32 - 461q-31 - 643q-30 - 28q-29 + 884q-28 + 102q-27 - 220q-26 - 527q-25 - 205q-24 + 644q-23 + 142q-22 + 37q-21 - 366q-20 - 358q-19 + 337q-18 + 104q-17 + 271q-16 - 104q-15 - 374q-14 + 29q-13 - 76q-12 + 336q-11 + 169q-10 - 184q-9 - 105q-8 - 295q-7 + 170q-6 + 262q-5 + 69q-4 - 5q-3 - 340q-2 - 58q-1 + 127 + 156q + 147q2 - 181q3 - 125q4 - 36q5 + 63q6 + 151q7 - 20q8 - 49q9 - 62q10 - 19q11 + 60q12 + 16q13 + 5q14 - 18q15 - 18q16 + 8q17 + 3q18 + 5q19 - q20 - 3q21 + q22
5 - q-115 + 3q-114 - 2q-113 - 2q-112 + 3q-111 - 2q-110 + 2q-109 + 5q-108 - 9q-107 - 10q-106 + 10q-105 + 11q-104 + 14q-103 + 2q-102 - 44q-101 - 44q-100 + 17q-99 + 83q-98 + 84q-97 - 12q-96 - 150q-95 - 184q-94 + 5q-93 + 276q-92 + 330q-91 + 11q-90 - 436q-89 - 572q-88 - 97q-87 + 698q-86 + 965q-85 + 217q-84 - 1018q-83 - 1517q-82 - 499q-81 + 1377q-80 + 2297q-79 + 979q-78 - 1709q-77 - 3230q-76 - 1721q-75 + 1863q-74 + 4217q-73 + 2745q-72 - 1731q-71 - 5120q-70 - 3906q-69 + 1249q-68 + 5716q-67 + 5068q-66 - 476q-65 - 5906q-64 - 6008q-63 - 452q-62 + 5694q-61 + 6590q-60 + 1309q-59 - 5158q-58 - 6748q-57 - 2012q-56 + 4500q-55 + 6596q-54 + 2423q-53 - 3845q-52 - 6212q-51 - 2644q-50 + 3259q-49 + 5799q-48 + 2733q-47 - 2771q-46 - 5391q-45 - 2798q-44 + 2300q-43 + 5000q-42 + 2933q-41 - 1784q-40 - 4641q-39 - 3072q-38 + 1194q-37 + 4141q-36 + 3255q-35 - 489q-34 - 3582q-33 - 3309q-32 - 223q-31 + 2784q-30 + 3241q-29 + 934q-28 - 1944q-27 - 2896q-26 - 1455q-25 + 955q-24 + 2364q-23 + 1756q-22 - 121q-21 - 1571q-20 - 1706q-19 - 627q-18 + 769q-17 + 1377q-16 + 947q-15 + 44q-14 - 775q-13 - 1022q-12 - 574q-11 + 162q-10 + 669q-9 + 810q-8 + 428q-7 - 235q-6 - 698q-5 - 697q-4 - 273q-3 + 358q-2 + 728q-1 + 568 + 44q - 481q2 - 664q3 - 344q4 + 169q5 + 509q6 + 472q7 + 121q8 - 284q9 - 419q10 - 242q11 + 43q12 + 259q13 + 265q14 + 83q15 - 114q16 - 174q17 - 112q18 - 3q19 + 89q20 + 93q21 + 29q22 - 28q23 - 41q24 - 29q25 - 7q26 + 21q27 + 16q28 + 2q29 - 3q30 - 3q31 - 5q32 + q33 + 3q34 - q35
6 q-159 - 3q-158 + 2q-157 + 2q-156 - 3q-155 + 2q-154 - 5q-153 + 7q-152 - 6q-151 + 9q-150 + 7q-149 - 26q-148 + 3q-147 - 12q-146 + 27q-145 + 9q-144 + 39q-143 + 4q-142 - 111q-141 - 31q-140 - 27q-139 + 100q-138 + 101q-137 + 146q-136 - 25q-135 - 340q-134 - 173q-133 - 76q-132 + 286q-131 + 372q-130 + 389q-129 - 148q-128 - 861q-127 - 505q-126 - 56q-125 + 842q-124 + 1051q-123 + 705q-122 - 792q-121 - 2219q-120 - 1296q-119 + 411q-118 + 2674q-117 + 3056q-116 + 1324q-115 - 2767q-114 - 5896q-113 - 3872q-112 + 1100q-111 + 6986q-110 + 8467q-109 + 4063q-108 - 5608q-107 - 13240q-106 - 10862q-105 - 603q-104 + 12608q-103 + 18449q-102 + 12090q-101 - 5524q-100 - 21870q-99 - 22898q-98 - 8417q-97 + 14341q-96 + 29091q-95 + 25208q-94 + 1577q-93 - 25271q-92 - 34513q-91 - 21136q-90 + 8206q-89 + 33096q-88 + 36662q-87 + 13247q-86 - 20202q-85 - 38372q-84 - 31212q-83 - 2002q-82 + 28525q-81 + 39864q-80 + 21746q-79 - 11591q-78 - 34205q-77 - 33504q-76 - 8973q-75 + 21095q-74 + 36240q-73 + 23709q-72 - 5745q-71 - 28059q-70 - 30875q-69 - 11121q-68 + 15869q-67 + 31668q-66 + 22847q-65 - 2804q-64 - 23672q-63 - 28506q-62 - 12374q-61 + 12025q-60 + 28554q-59 + 23230q-58 + 833q-57 - 19579q-56 - 27477q-55 - 15552q-54 + 6503q-53 + 24923q-52 + 24738q-51 + 6851q-50 - 13112q-49 - 25325q-48 - 19621q-47 - 1619q-46 + 18265q-45 + 24478q-44 + 13562q-43 - 3723q-42 - 19434q-41 - 21296q-40 - 10274q-39 + 8147q-38 + 19631q-37 + 17288q-36 + 6216q-35 - 9413q-34 - 17506q-33 - 15350q-32 - 2652q-31 + 9925q-30 + 14700q-29 + 12063q-28 + 1388q-27 - 8283q-26 - 13337q-25 - 8862q-24 - 531q-23 + 6332q-22 + 10282q-21 + 7112q-20 + 1360q-19 - 5509q-18 - 7154q-17 - 5439q-16 - 1916q-15 + 3108q-14 + 5003q-13 + 4990q-12 + 1443q-11 - 863q-10 - 2954q-9 - 3943q-8 - 2275q-7 - 477q-6 + 2025q-5 + 2226q-4 + 2761q-3 + 1515q-2 - 637q-1 - 1844 - 2567q - 1514q2 - 838q3 + 1316q4 + 2239q5 + 1894q6 + 912q7 - 624q8 - 1355q9 - 2164q10 - 999q11 + 166q12 + 1100q13 + 1455q14 + 1025q15 + 386q16 - 903q17 - 1017q18 - 857q19 - 280q20 + 295q21 + 674q22 + 779q23 + 163q24 - 101q25 - 392q26 - 386q27 - 263q28 + 10q29 + 271q30 + 172q31 + 153q32 + 12q33 - 65q34 - 132q35 - 82q36 + 14q37 + 11q38 + 47q39 + 30q40 + 19q41 - 19q42 - 19q43 - 7q45 + 3q46 + 3q47 + 5q48 - q49 - 3q50 + q51
7 - q-210 + 3q-209 - 2q-208 - 2q-207 + 3q-206 - 2q-205 + 5q-204 - 4q-203 - 6q-202 + 6q-201 - 6q-200 + 9q-199 + 12q-198 - 11q-197 + 7q-196 - 17q-195 - 29q-194 + 6q-193 - 2q-192 + 62q-191 + 63q-190 - 27q-189 - 20q-188 - 96q-187 - 106q-186 - 14q-185 + 25q-184 + 211q-183 + 237q-182 + 20q-181 - 78q-180 - 295q-179 - 332q-178 - 99q-177 + 13q-176 + 383q-175 + 479q-174 + 183q-173 + 17q-172 - 366q-171 - 378q-170 - 57q-169 - 122q-168 - 24q-167 - 165q-166 - 423q-165 + 75q-164 + 655q-163 + 1611q-162 + 2141q-161 + 661q-160 - 1814q-159 - 4630q-158 - 5722q-157 - 2800q-156 + 2875q-155 + 9393q-154 + 12527q-153 + 8017q-152 - 2941q-151 - 16148q-150 - 23622q-149 - 17836q-148 + 277q-147 + 23717q-146 + 39237q-145 + 34258q-144 + 7861q-143 - 30032q-142 - 58780q-141 - 58207q-140 - 23758q-139 + 31753q-138 + 79299q-137 + 88772q-136 + 49352q-135 - 24998q-134 - 96593q-133 - 123006q-132 - 84200q-131 + 7300q-130 + 105699q-129 + 155432q-128 + 124846q-127 + 21856q-126 - 102449q-125 - 180156q-124 - 165784q-123 - 59395q-122 + 86054q-121 + 192166q-120 + 200049q-119 + 99457q-118 - 58771q-117 - 189501q-116 - 222260q-115 - 135260q-114 + 26051q-113 + 174279q-112 + 230137q-111 + 161036q-110 + 5176q-109 - 151314q-108 - 224712q-107 - 174293q-106 - 29931q-105 + 126678q-104 + 210911q-103 + 176076q-102 + 45129q-101 - 105553q-100 - 193615q-99 - 169922q-98 - 51946q-97 + 90155q-96 + 177729q-95 + 160931q-94 + 53128q-93 - 80528q-92 - 165536q-91 - 152675q-90 - 52635q-89 + 74037q-88 + 157082q-87 + 147755q-86 + 53918q-85 - 68037q-84 - 151040q-83 - 146290q-82 - 58609q-81 + 59757q-80 + 144941q-79 + 147319q-78 + 67430q-77 - 47606q-76 - 136940q-75 - 149185q-74 - 79427q-73 + 31168q-72 + 125223q-71 + 149735q-70 + 93350q-69 - 10396q-68 - 108925q-67 - 147457q-66 - 107274q-65 - 13413q-64 + 87514q-63 + 140265q-62 + 119166q-61 + 39081q-60 - 61142q-59 - 127154q-58 - 126624q-57 - 64144q-56 + 30731q-55 + 107015q-54 + 127346q-53 + 86002q-52 + 1679q-51 - 80075q-50 - 119374q-49 - 101364q-48 - 33171q-47 + 47803q-46 + 102017q-45 + 107305q-44 + 59692q-43 - 13346q-42 - 75846q-41 - 101889q-40 - 77567q-39 - 19072q-38 + 44119q-37 + 85352q-36 + 83425q-35 + 44334q-34 - 11146q-33 - 59759q-32 - 76777q-31 - 58822q-30 - 17217q-29 + 30374q-28 + 59166q-27 + 60095q-26 + 36261q-25 - 2576q-24 - 35180q-23 - 49882q-22 - 43212q-21 - 17614q-20 + 10973q-19 + 31816q-18 + 38331q-17 + 27206q-16 + 7902q-15 - 11961q-14 - 25579q-13 - 25955q-12 - 17504q-11 - 3917q-10 + 10085q-9 + 16934q-8 + 17733q-7 + 12335q-6 + 2518q-5 - 5366q-4 - 11119q-3 - 12639q-2 - 8969q-1 - 4088 + 2202q + 7412q2 + 8854q3 + 8514q4 + 4785q5 - 526q6 - 4450q7 - 7618q8 - 7562q9 - 4680q10 - 1023q11 + 3683q12 + 6402q13 + 6277q14 + 4617q15 + 747q16 - 2842q17 - 4903q18 - 5587q19 - 3466q20 - 453q21 + 2110q22 + 4055q23 + 3902q24 + 2471q25 + 485q26 - 1894q27 - 2858q28 - 2620q29 - 1678q30 + 25q31 + 1174q32 + 1801q33 + 1815q34 + 861q35 - 84q36 - 777q37 - 1151q38 - 865q39 - 471q40 + 16q41 + 535q42 + 582q43 + 457q44 + 197q45 - 114q46 - 203q47 - 261q48 - 230q49 - 56q50 + 52q51 + 116q52 + 116q53 + 38q54 + 25q55 - 13q56 - 50q57 - 35q58 - 20q59 + 7q60 + 17q61 + 3q62 + 5q63 + 7q64 - 3q65 - 3q66 - 5q67 + q68 + 3q69 - q70


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 85]]
Out[2]=   
PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[18, 11, 19, 12], X[14, 7, 15, 8], 
 
>   X[8, 3, 9, 4], X[4, 9, 5, 10], X[20, 13, 1, 14], X[10, 17, 11, 18], 
 
>   X[12, 19, 13, 20], X[2, 16, 3, 15]]
In[3]:=
GaussCode[Knot[10, 85]]
Out[3]=   
GaussCode[1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, -3, 9, 
 
>   -7]
In[4]:=
DTCode[Knot[10, 85]]
Out[4]=   
DTCode[6, 8, 16, 14, 4, 18, 20, 2, 10, 12]
In[5]:=
br = BR[Knot[10, 85]]
Out[5]=   
BR[3, {-1, -1, -1, -1, 2, -1, -1, 2, -1, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 10}
In[7]:=
BraidIndex[Knot[10, 85]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[10, 85]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 85]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Chiral, 2, 4, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 85]][t]
Out[10]=   
      -4   4    8    10             2      3    4
11 + t   - -- + -- - -- - 10 t + 8 t  - 4 t  + t
            3    2   t
           t    t
In[11]:=
Conway[Knot[10, 85]][z]
Out[11]=   
       2      4      6    8
1 + 2 z  + 4 z  + 4 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 85]}
In[13]:=
{KnotDet[Knot[10, 85]], KnotSignature[Knot[10, 85]]}
Out[13]=   
{57, -4}
In[14]:=
Jones[Knot[10, 85]][q]
Out[14]=   
     -9   3    5    7    9    9    8    7    4
3 - q   + -- - -- + -- - -- + -- - -- + -- - - - q
           8    7    6    5    4    3    2   q
          q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 85]}
In[16]:=
A2Invariant[Knot[10, 85]][q]
Out[16]=   
     -26    -24    -22    -20    -16    -14    3     2    2    2     2
1 - q    + q    - q    + q    - q    + q    - --- + --- + -- + -- - q
                                               12    10    6    4
                                              q     q     q    q
In[17]:=
HOMFLYPT[Knot[10, 85]][a, z]
Out[17]=   
 2    4    6      2  2      4  2      6  2      2  4       4  4      6  4
a  + a  - a  - 3 a  z  + 9 a  z  - 4 a  z  - 4 a  z  + 12 a  z  - 4 a  z  - 
 
     2  6      4  6    6  6    4  8
>   a  z  + 6 a  z  - a  z  + a  z
In[18]:=
Kauffman[Knot[10, 85]][a, z]
Out[18]=   
  2    4    6            3        5      9        2  2       4  2      6  2
-a  + a  + a  - a z - 2 a  z - 2 a  z + a  z - 7 a  z  - 14 a  z  - 5 a  z  + 
 
     8  2    10  2        3       3  3       5  3      7  3      9  3
>   a  z  - a   z  + 4 a z  + 11 a  z  + 14 a  z  + 2 a  z  - 4 a  z  + 
 
     11  3       2  4       4  4      6  4      8  4      10  4        5
>   a   z  + 19 a  z  + 37 a  z  + 8 a  z  - 7 a  z  + 3 a   z  - 4 a z  - 
 
       3  5       5  5       7  5      9  5       2  6       4  6       6  6
>   4 a  z  - 15 a  z  - 10 a  z  + 5 a  z  - 14 a  z  - 32 a  z  - 12 a  z  + 
 
       8  6      7      3  7      7  7      2  8      4  8      6  8
>   6 a  z  + a z  - 5 a  z  + 6 a  z  + 3 a  z  + 8 a  z  + 5 a  z  + 
 
       3  9      5  9
>   2 a  z  + 2 a  z
In[19]:=
{Vassiliev[2][Knot[10, 85]], Vassiliev[3][Knot[10, 85]]}
Out[19]=   
{2, -3}
In[20]:=
Kh[Knot[10, 85]][q, t]
Out[20]=   
3    5      1        2        1        3        2        4        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
                                                                2
      5        4       4       5      4      4     2 t   2 t   t         2
>   ------ + ----- + ----- + ----- + ---- + ---- + --- + --- + -- + 2 q t  + 
     11  3    9  3    9  2    7  2    7      5      3     q    q
    q   t    q  t    q  t    q  t    q  t   q  t   q
 
     3  3
>   q  t
In[21]:=
ColouredJones[Knot[10, 85], 2][q]
Out[21]=   
       -25    3     2     5    12     8     8    24    21     9    40    32
-11 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + 
              24    23    22    21    20    19    18    17    16    15    14
             q     q     q     q     q     q     q     q     q     q     q
 
    17    54    31    29    57   20   36   47   6    35   30   5    25
>   --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- - -- + -- - 8 q + 
     13    12    11    10    9    8    7    6    5    4    3    2   q
    q     q     q     q     q    q    q    q    q    q    q    q
 
        2    3      4    5
>   10 q  - q  - 3 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1085
10.84
1084
10.86
1086