© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.67
1067
10.69
1069
    10.68
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1068   

Visit 1068's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1068's page at Knotilus!

Acknowledgement

10.68
KnotPlot

PD Presentation: X4251 X12,4,13,3 X20,13,1,14 X16,5,17,6 X8,19,9,20 X18,9,19,10 X10,17,11,18 X14,7,15,8 X6,15,7,16 X2,12,3,11

Gauss Code: {1, -10, 2, -1, 4, -9, 8, -5, 6, -7, 10, -2, 3, -8, 9, -4, 7, -6, 5, -3}

DT (Dowker-Thistlethwaite) Code: 4 12 16 14 18 2 20 6 10 8

Minimum Braid Representative:


Length is 14, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 2 3 / NotAvailable 1

Alexander Polynomial: 4t-2 - 14t-1 + 21 - 14t + 4t2

Conway Polynomial: 1 + 2z2 + 4z4

Other knots with the same Alexander/Conway Polynomial: {1031, ...}

Determinant and Signature: {57, 0}

Jones Polynomial: - q-7 + 2q-6 - 4q-5 + 7q-4 - 8q-3 + 9q-2 - 9q-1 + 8 - 5q + 3q2 - q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-22 - 2q-16 + 2q-14 + q-12 + 2q-8 - q-6 + q-4 + 2q2 - 2q4 + q6 + q8 - q10

HOMFLY-PT Polynomial: - a-2z2 + z4 + a2 + 3a2z2 + 2a2z4 + a4 + a4z2 + a4z4 - a6 - a6z2

Kauffman Polynomial: a-3z3 - a-2z2 + 3a-2z4 - 3a-1z3 + 5a-1z5 + 4z2 - 10z4 + 7z6 - 2az + 8az3 - 14az5 + 7az7 - a2 + 7a2z2 - 9a2z4 - 4a2z6 + 4a2z8 - 6a3z + 27a3z3 - 30a3z5 + 7a3z7 + a3z9 + a4 - 5a4z2 + 17a4z4 - 20a4z6 + 6a4z8 - 8a5z + 23a5z3 - 16a5z5 + a5z7 + a5z9 + a6 - 7a6z2 + 13a6z4 - 9a6z6 + 2a6z8 - 4a7z + 8a7z3 - 5a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1068. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 7          1
j = 5         2 
j = 3        31 
j = 1       52  
j = -1      54   
j = -3     44    
j = -5    45     
j = -7   34      
j = -9  14       
j = -11 13        
j = -13 1         
j = -151          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-21 - 2q-20 - q-19 + 7q-18 - 6q-17 - 9q-16 + 21q-15 - 6q-14 - 27q-13 + 36q-12 + 3q-11 - 49q-10 + 41q-9 + 19q-8 - 64q-7 + 36q-6 + 34q-5 - 64q-4 + 24q-3 + 38q-2 - 51q-1 + 12 + 28q - 30q2 + 6q3 + 12q4 - 12q5 + 4q6 + 2q7 - 3q8 + q9
3 - q-42 + 2q-41 + q-40 - 2q-39 - 6q-38 + 5q-37 + 11q-36 - 2q-35 - 24q-34 - 2q-33 + 34q-32 + 19q-31 - 47q-30 - 39q-29 + 47q-28 + 69q-27 - 40q-26 - 96q-25 + 22q-24 + 115q-23 + 11q-22 - 132q-21 - 41q-20 + 130q-19 + 80q-18 - 127q-17 - 108q-16 + 104q-15 + 144q-14 - 87q-13 - 163q-12 + 54q-11 + 185q-10 - 25q-9 - 191q-8 - 10q-7 + 192q-6 + 34q-5 - 174q-4 - 57q-3 + 153q-2 + 60q-1 - 114 - 62q + 88q2 + 43q3 - 52q4 - 32q5 + 34q6 + 13q7 - 16q8 - 6q9 + 10q10 - 2q11 - 3q12 + 3q13 - q15 - 2q16 + 3q17 - q18


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 68]]
Out[2]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[16, 5, 17, 6], 
 
>   X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], X[14, 7, 15, 8], 
 
>   X[6, 15, 7, 16], X[2, 12, 3, 11]]
In[3]:=
GaussCode[Knot[10, 68]]
Out[3]=   
GaussCode[1, -10, 2, -1, 4, -9, 8, -5, 6, -7, 10, -2, 3, -8, 9, -4, 7, -6, 5, 
 
>   -3]
In[4]:=
DTCode[Knot[10, 68]]
Out[4]=   
DTCode[4, 12, 16, 14, 18, 2, 20, 6, 10, 8]
In[5]:=
br = BR[Knot[10, 68]]
Out[5]=   
BR[5, {1, 1, -2, 1, -2, -2, -3, 2, 2, -4, 3, -2, -4, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 14}
In[7]:=
BraidIndex[Knot[10, 68]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 68]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 68]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 2, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 68]][t]
Out[10]=   
     4    14             2
21 + -- - -- - 14 t + 4 t
      2   t
     t
In[11]:=
Conway[Knot[10, 68]][z]
Out[11]=   
       2      4
1 + 2 z  + 4 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 31], Knot[10, 68]}
In[13]:=
{KnotDet[Knot[10, 68]], KnotSignature[Knot[10, 68]]}
Out[13]=   
{57, 0}
In[14]:=
Jones[Knot[10, 68]][q]
Out[14]=   
     -7   2    4    7    8    9    9            2    3
8 - q   + -- - -- + -- - -- + -- - - - 5 q + 3 q  - q
           6    5    4    3    2   q
          q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 68]}
In[16]:=
A2Invariant[Knot[10, 68]][q]
Out[16]=   
  -22    2     2     -12   2     -6    -4      2      4    6    8    10
-q    - --- + --- + q    + -- - q   + q   + 2 q  - 2 q  + q  + q  - q
         16    14           8
        q     q            q
In[17]:=
HOMFLYPT[Knot[10, 68]][a, z]
Out[17]=   
                2
 2    4    6   z       2  2    4  2    6  2    4      2  4    4  4
a  + a  - a  - -- + 3 a  z  + a  z  - a  z  + z  + 2 a  z  + a  z
                2
               a
In[18]:=
Kauffman[Knot[10, 68]][a, z]
Out[18]=   
                                                           2
  2    4    6              3        5        7        2   z       2  2
-a  + a  + a  - 2 a z - 6 a  z - 8 a  z - 4 a  z + 4 z  - -- + 7 a  z  - 
                                                           2
                                                          a
 
                         3      3
       4  2      6  2   z    3 z         3       3  3       5  3      7  3
>   5 a  z  - 7 a  z  + -- - ---- + 8 a z  + 27 a  z  + 23 a  z  + 8 a  z  - 
                         3    a
                        a
 
               4                                      5
        4   3 z       2  4       4  4       6  4   5 z          5       3  5
>   10 z  + ---- - 9 a  z  + 17 a  z  + 13 a  z  + ---- - 14 a z  - 30 a  z  - 
              2                                     a
             a
 
        5  5      7  5      6      2  6       4  6      6  6        7
>   16 a  z  - 5 a  z  + 7 z  - 4 a  z  - 20 a  z  - 9 a  z  + 7 a z  + 
 
       3  7    5  7    7  7      2  8      4  8      6  8    3  9    5  9
>   7 a  z  + a  z  + a  z  + 4 a  z  + 6 a  z  + 2 a  z  + a  z  + a  z
In[19]:=
{Vassiliev[2][Knot[10, 68]], Vassiliev[3][Knot[10, 68]]}
Out[19]=   
{2, -3}
In[20]:=
Kh[Knot[10, 68]][q, t]
Out[20]=   
4           1        1        1        3        1       4       3       4
- + 5 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q          15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
          q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      4       5       4      4      5               3      3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 2 q t + 3 q  t + q  t  + 2 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     7  3
>   q  t
In[21]:=
ColouredJones[Knot[10, 68], 2][q]
Out[21]=   
      -21    2     -19    7     6     9    21     6    27    36     3    49
12 + q    - --- - q    + --- - --- - --- + --- - --- - --- + --- + --- - --- + 
             20           18    17    16    15    14    13    12    11    10
            q            q     q     q     q     q     q     q     q     q
 
    41   19   64   36   34   64   24   38   51              2      3       4
>   -- + -- - -- + -- + -- - -- + -- + -- - -- + 28 q - 30 q  + 6 q  + 12 q  - 
     9    8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q    q
 
        5      6      7      8    9
>   12 q  + 4 q  + 2 q  - 3 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1068
10.67
1067
10.69
1069