© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.65
1065
10.67
1067
    10.66
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 1066   

Visit 1066's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 1066's page at Knotilus!

Acknowledgement

10.66
KnotPlot

PD Presentation: X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X9,2,10,3

Gauss Code: {-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 18 8 6 20 12

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 3 3 3 / NotAvailable 1

Alexander Polynomial: 3t-3 - 9t-2 + 16t-1 - 19 + 16t - 9t2 + 3t3

Conway Polynomial: 1 + 7z2 + 9z4 + 3z6

Other knots with the same Alexander/Conway Polynomial: {K11a245, ...}

Determinant and Signature: {75, -6}

Jones Polynomial: q-13 - 4q-12 + 7q-11 - 10q-10 + 12q-9 - 13q-8 + 11q-7 - 8q-6 + 6q-5 - 2q-4 + q-3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-40 - 2q-36 + q-34 - 2q-32 - 3q-26 + 2q-24 - 2q-22 + 3q-20 + 2q-18 + 3q-14 - q-12 + q-10

HOMFLY-PT Polynomial: 2a6 + 5a6z2 + 4a6z4 + a6z6 + 2a8 + 9a8z2 + 8a8z4 + 2a8z6 - 4a10 - 8a10z2 - 3a10z4 + a12 + a12z2

Kauffman Polynomial: - 2a6 + 5a6z2 - 4a6z4 + a6z6 + a7z + 2a7z3 - 5a7z5 + 2a7z7 + 2a8 - 6a8z2 + 8a8z4 - 8a8z6 + 3a8z8 - 5a9z + 20a9z3 - 22a9z5 + 6a9z7 + a9z9 + 4a10 - 8a10z2 + 8a10z4 - 13a10z6 + 7a10z8 - 6a11z + 22a11z3 - 28a11z5 + 11a11z7 + a11z9 + a12 + 5a12z2 - 13a12z4 + 3a12z6 + 4a12z8 + a13z3 - 7a13z5 + 7a13z7 + 2a14z2 - 8a14z4 + 7a14z6 - 3a15z3 + 4a15z5 + a16z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, -17}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 1066. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -5          1
j = -7         21
j = -9        4  
j = -11       42  
j = -13      74   
j = -15     64    
j = -17    67     
j = -19   46      
j = -21  36       
j = -23 14        
j = -25 3         
j = -271          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-36 - 4q-35 + 3q-34 + 10q-33 - 24q-32 + 10q-31 + 36q-30 - 62q-29 + 15q-28 + 77q-27 - 104q-26 + 8q-25 + 116q-24 - 122q-23 - 10q-22 + 131q-21 - 105q-20 - 28q-19 + 113q-18 - 67q-17 - 36q-16 + 73q-15 - 27q-14 - 28q-13 + 33q-12 - 4q-11 - 12q-10 + 8q-9 + q-8 - 2q-7 + q-6
3 q-69 - 4q-68 + 3q-67 + 6q-66 - 4q-65 - 16q-64 + 7q-63 + 39q-62 - 20q-61 - 65q-60 + 24q-59 + 118q-58 - 38q-57 - 183q-56 + 39q-55 + 277q-54 - 37q-53 - 378q-52 + 11q-51 + 490q-50 + 28q-49 - 584q-48 - 92q-47 + 661q-46 + 160q-45 - 696q-44 - 237q-43 + 701q-42 + 301q-41 - 660q-40 - 365q-39 + 601q-38 + 403q-37 - 514q-36 - 426q-35 + 407q-34 + 436q-33 - 307q-32 - 405q-31 + 187q-30 + 378q-29 - 107q-28 - 301q-27 + 16q-26 + 243q-25 + 18q-24 - 155q-23 - 56q-22 + 105q-21 + 43q-20 - 45q-19 - 41q-18 + 23q-17 + 21q-16 - 4q-15 - 12q-14 + 3q-13 + 3q-12 + q-11 - 2q-10 + q-9
4 q-112 - 4q-111 + 3q-110 + 6q-109 - 8q-108 + 4q-107 - 19q-106 + 20q-105 + 29q-104 - 42q-103 + 9q-102 - 66q-101 + 80q-100 + 110q-99 - 135q-98 - 30q-97 - 175q-96 + 255q-95 + 333q-94 - 312q-93 - 230q-92 - 441q-91 + 616q-90 + 878q-89 - 479q-88 - 731q-87 - 1070q-86 + 1081q-85 + 1881q-84 - 368q-83 - 1430q-82 - 2200q-81 + 1318q-80 + 3138q-79 + 237q-78 - 1907q-77 - 3575q-76 + 1037q-75 + 4094q-74 + 1172q-73 - 1809q-72 - 4647q-71 + 331q-70 + 4344q-69 + 2008q-68 - 1196q-67 - 5038q-66 - 478q-65 + 3893q-64 + 2500q-63 - 330q-62 - 4771q-61 - 1198q-60 + 2979q-59 + 2647q-58 + 578q-57 - 3999q-56 - 1738q-55 + 1786q-54 + 2444q-53 + 1378q-52 - 2839q-51 - 1946q-50 + 539q-49 + 1837q-48 + 1821q-47 - 1497q-46 - 1656q-45 - 401q-44 + 940q-43 + 1683q-42 - 378q-41 - 962q-40 - 726q-39 + 138q-38 + 1072q-37 + 171q-36 - 279q-35 - 523q-34 - 218q-33 + 433q-32 + 197q-31 + 49q-30 - 194q-29 - 186q-28 + 92q-27 + 64q-26 + 73q-25 - 28q-24 - 67q-23 + 10q-22 + 2q-21 + 23q-20 + 2q-19 - 13q-18 + 3q-17 - 2q-16 + 3q-15 + q-14 - 2q-13 + q-12
5 q-165 - 4q-164 + 3q-163 + 6q-162 - 8q-161 + q-159 - 6q-158 + 10q-157 + 17q-156 - 20q-155 - 23q-154 + 5q-153 + 19q-152 + 39q-151 + 12q-150 - 61q-149 - 101q-148 - 5q-147 + 170q-146 + 184q-145 - 18q-144 - 300q-143 - 410q-142 - 31q-141 + 657q-140 + 817q-139 + 46q-138 - 1078q-137 - 1525q-136 - 368q-135 + 1791q-134 + 2713q-133 + 892q-132 - 2537q-131 - 4411q-130 - 2072q-129 + 3315q-128 + 6721q-127 + 3899q-126 - 3764q-125 - 9456q-124 - 6640q-123 + 3698q-122 + 12370q-121 + 10117q-120 - 2753q-119 - 15075q-118 - 14217q-117 + 965q-116 + 17153q-115 + 18385q-114 + 1738q-113 - 18285q-112 - 22316q-111 - 4942q-110 + 18387q-109 + 25406q-108 + 8386q-107 - 17462q-106 - 27561q-105 - 11583q-104 + 15773q-103 + 28564q-102 + 14359q-101 - 13581q-100 - 28639q-99 - 16437q-98 + 11104q-97 + 27810q-96 + 18043q-95 - 8553q-94 - 26444q-93 - 19023q-92 + 5915q-91 + 24507q-90 + 19703q-89 - 3206q-88 - 22235q-87 - 19991q-86 + 446q-85 + 19501q-84 + 19912q-83 + 2389q-82 - 16321q-81 - 19456q-80 - 5102q-79 + 12832q-78 + 18254q-77 + 7555q-76 - 8880q-75 - 16569q-74 - 9441q-73 + 5094q-72 + 13934q-71 + 10504q-70 - 1276q-69 - 10992q-68 - 10611q-67 - 1645q-66 + 7475q-65 + 9713q-64 + 3966q-63 - 4336q-62 - 8010q-61 - 4932q-60 + 1377q-59 + 5833q-58 + 5178q-57 + 510q-56 - 3616q-55 - 4307q-54 - 1807q-53 + 1689q-52 + 3311q-51 + 2028q-50 - 368q-49 - 1953q-48 - 1881q-47 - 422q-46 + 1055q-45 + 1298q-44 + 631q-43 - 294q-42 - 807q-41 - 589q-40 + 8q-39 + 358q-38 + 388q-37 + 145q-36 - 146q-35 - 217q-34 - 95q-33 + 6q-32 + 93q-31 + 81q-30 + 2q-29 - 40q-28 - 17q-27 - 17q-26 + 5q-25 + 20q-24 + 3q-23 - 7q-22 + 2q-21 - 2q-20 - 2q-19 + 3q-18 + q-17 - 2q-16 + q-15
6 q-228 - 4q-227 + 3q-226 + 6q-225 - 8q-224 - 3q-222 + 14q-221 - 16q-220 - 2q-219 + 39q-218 - 42q-217 - 4q-216 + 2q-215 + 57q-214 - 41q-213 - 35q-212 + 100q-211 - 140q-210 - 20q-209 + 64q-208 + 248q-207 - 79q-206 - 169q-205 + 89q-204 - 504q-203 - 74q-202 + 376q-201 + 1014q-200 + 158q-199 - 527q-198 - 506q-197 - 1941q-196 - 613q-195 + 1353q-194 + 3625q-193 + 2006q-192 - 656q-191 - 2762q-190 - 6736q-189 - 3705q-188 + 2700q-187 + 10343q-186 + 9133q-185 + 2273q-184 - 6914q-183 - 18678q-182 - 14669q-181 + 838q-180 + 22137q-179 + 27114q-178 + 15411q-177 - 8703q-176 - 39411q-175 - 40753q-174 - 13203q-173 + 33653q-172 + 57844q-171 + 47459q-170 + 2693q-169 - 61888q-168 - 83258q-167 - 49065q-166 + 31675q-165 + 91783q-164 + 98405q-163 + 37579q-162 - 70153q-161 - 129424q-160 - 104830q-159 + 5020q-158 + 110215q-157 + 152282q-156 + 92208q-155 - 52386q-154 - 158190q-153 - 161908q-152 - 41454q-151 + 101207q-150 + 186918q-149 + 146792q-148 - 14279q-147 - 158247q-146 - 198592q-145 - 88400q-144 + 71194q-143 + 192656q-142 + 181743q-141 + 26139q-140 - 136562q-139 - 207712q-138 - 119619q-137 + 36403q-136 + 177073q-135 + 192865q-134 + 56166q-133 - 107215q-132 - 197392q-131 - 133783q-130 + 6344q-129 + 152178q-128 + 188492q-127 + 76464q-126 - 76882q-125 - 177616q-124 - 138757q-123 - 20779q-122 + 122336q-121 + 176291q-120 + 93488q-119 - 43178q-118 - 150494q-117 - 139215q-116 - 49577q-115 + 84670q-114 + 155711q-113 + 108395q-112 - 3359q-111 - 112182q-110 - 131152q-109 - 77814q-108 + 37707q-107 + 121253q-106 + 113524q-105 + 37275q-104 - 61777q-103 - 106650q-102 - 94527q-101 - 10940q-100 + 72032q-99 + 98738q-98 + 64897q-97 - 8764q-96 - 64499q-95 - 87954q-94 - 45268q-93 + 19104q-92 + 63094q-91 + 66699q-90 + 29079q-89 - 17154q-88 - 58073q-87 - 52186q-86 - 18491q-85 + 20800q-84 + 44006q-83 + 38976q-82 + 15622q-81 - 20922q-80 - 34705q-79 - 28920q-78 - 8018q-77 + 14209q-76 + 25770q-75 + 23531q-74 + 3647q-73 - 10973q-72 - 18731q-71 - 14862q-70 - 4181q-69 + 7614q-68 + 14519q-67 + 9264q-66 + 2619q-65 - 5186q-64 - 8412q-63 - 7223q-62 - 1819q-61 + 4099q-60 + 4838q-59 + 4331q-58 + 1087q-57 - 1710q-56 - 3504q-55 - 2577q-54 - 232q-53 + 759q-52 + 1806q-51 + 1363q-50 + 517q-49 - 718q-48 - 945q-47 - 484q-46 - 312q-45 + 267q-44 + 417q-43 + 399q-42 - 8q-41 - 145q-40 - 92q-39 - 169q-38 - 30q-37 + 45q-36 + 109q-35 + 12q-34 - 11q-33 + 12q-32 - 33q-31 - 15q-30 - 4q-29 + 22q-28 - 6q-26 + 8q-25 - 3q-24 - 2q-23 - 2q-22 + 3q-21 + q-20 - 2q-19 + q-18


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 66]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], 
 
>   X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], X[19, 12, 20, 13], 
 
>   X[13, 8, 14, 9], X[9, 2, 10, 3]]
In[3]:=
GaussCode[Knot[10, 66]]
Out[3]=   
GaussCode[-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 
 
>   6]
In[4]:=
DTCode[Knot[10, 66]]
Out[4]=   
DTCode[4, 10, 14, 16, 2, 18, 8, 6, 20, 12]
In[5]:=
br = BR[Knot[10, 66]]
Out[5]=   
BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 66]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 66]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 66]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 3, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 66]][t]
Out[10]=   
      3    9    16             2      3
-19 + -- - -- + -- + 16 t - 9 t  + 3 t
       3    2   t
      t    t
In[11]:=
Conway[Knot[10, 66]][z]
Out[11]=   
       2      4      6
1 + 7 z  + 9 z  + 3 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 66], Knot[11, Alternating, 245]}
In[13]:=
{KnotDet[Knot[10, 66]], KnotSignature[Knot[10, 66]]}
Out[13]=   
{75, -6}
In[14]:=
Jones[Knot[10, 66]][q]
Out[14]=   
 -13    4     7    10    12   13   11   8    6    2     -3
q    - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
        12    11    10    9    8    7    6    5    4
       q     q     q     q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 66]}
In[16]:=
A2Invariant[Knot[10, 66]][q]
Out[16]=   
 -40    2     -34    2     3     2     2     3     2     3     -12    -10
q    - --- + q    - --- - --- + --- - --- + --- + --- + --- - q    + q
        36           32    26    24    22    20    18    14
       q            q     q     q     q     q     q     q
In[17]:=
HOMFLYPT[Knot[10, 66]][a, z]
Out[17]=   
   6      8      10    12      6  2      8  2      10  2    12  2      6  4
2 a  + 2 a  - 4 a   + a   + 5 a  z  + 9 a  z  - 8 a   z  + a   z  + 4 a  z  + 
 
       8  4      10  4    6  6      8  6
>   8 a  z  - 3 a   z  + a  z  + 2 a  z
In[18]:=
Kauffman[Knot[10, 66]][a, z]
Out[18]=   
    6      8      10    12    7        9        11        6  2      8  2
-2 a  + 2 a  + 4 a   + a   + a  z - 5 a  z - 6 a   z + 5 a  z  - 6 a  z  - 
 
       10  2      12  2      14  2      7  3       9  3       11  3    13  3
>   8 a   z  + 5 a   z  + 2 a   z  + 2 a  z  + 20 a  z  + 22 a   z  + a   z  - 
 
       15  3      6  4      8  4      10  4       12  4      14  4    16  4
>   3 a   z  - 4 a  z  + 8 a  z  + 8 a   z  - 13 a   z  - 8 a   z  + a   z  - 
 
       7  5       9  5       11  5      13  5      15  5    6  6      8  6
>   5 a  z  - 22 a  z  - 28 a   z  - 7 a   z  + 4 a   z  + a  z  - 8 a  z  - 
 
        10  6      12  6      14  6      7  7      9  7       11  7
>   13 a   z  + 3 a   z  + 7 a   z  + 2 a  z  + 6 a  z  + 11 a   z  + 
 
       13  7      8  8      10  8      12  8    9  9    11  9
>   7 a   z  + 3 a  z  + 7 a   z  + 4 a   z  + a  z  + a   z
In[19]:=
{Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]}
Out[19]=   
{7, -17}
In[20]:=
Kh[Knot[10, 66]][q, t]
Out[20]=   
 -7    -5      1        3        1        4        3        6        4
q   + q   + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 
             27  10    25  9    23  9    23  8    21  8    21  7    19  7
            q   t     q   t    q   t    q   t    q   t    q   t    q   t
 
      6        6        7        6        4        7        4        4
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     19  6    17  6    17  5    15  5    15  4    13  4    13  3    11  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        4      2
>   ------ + ----- + ----
     11  2    9  2    7
    q   t    q  t    q  t
In[21]:=
ColouredJones[Knot[10, 66], 2][q]
Out[21]=   
 -36    4     3    10    24    10    36    62    15    77    104    8    116
q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 
        35    34    33    32    31    30    29    28    27    26    25    24
       q     q     q     q     q     q     q     q     q     q     q     q
 
    122   10    131   105   28    113   67    36    73    27    28    33
>   --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 
     23    22    21    20    19    18    17    16    15    14    13    12
    q     q     q     q     q     q     q     q     q     q     q     q
 
     4    12    8     -8   2     -6
>   --- - --- + -- + q   - -- + q
     11    10    9          7
    q     q     q          q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1066
10.65
1065
10.67
1067