© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1066Visit 1066's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1066's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 14 16 2 18 8 6 20 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 3t-3 - 9t-2 + 16t-1 - 19 + 16t - 9t2 + 3t3 |
Conway Polynomial: | 1 + 7z2 + 9z4 + 3z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11a245, ...} |
Determinant and Signature: | {75, -6} |
Jones Polynomial: | q-13 - 4q-12 + 7q-11 - 10q-10 + 12q-9 - 13q-8 + 11q-7 - 8q-6 + 6q-5 - 2q-4 + q-3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-40 - 2q-36 + q-34 - 2q-32 - 3q-26 + 2q-24 - 2q-22 + 3q-20 + 2q-18 + 3q-14 - q-12 + q-10 |
HOMFLY-PT Polynomial: | 2a6 + 5a6z2 + 4a6z4 + a6z6 + 2a8 + 9a8z2 + 8a8z4 + 2a8z6 - 4a10 - 8a10z2 - 3a10z4 + a12 + a12z2 |
Kauffman Polynomial: | - 2a6 + 5a6z2 - 4a6z4 + a6z6 + a7z + 2a7z3 - 5a7z5 + 2a7z7 + 2a8 - 6a8z2 + 8a8z4 - 8a8z6 + 3a8z8 - 5a9z + 20a9z3 - 22a9z5 + 6a9z7 + a9z9 + 4a10 - 8a10z2 + 8a10z4 - 13a10z6 + 7a10z8 - 6a11z + 22a11z3 - 28a11z5 + 11a11z7 + a11z9 + a12 + 5a12z2 - 13a12z4 + 3a12z6 + 4a12z8 + a13z3 - 7a13z5 + 7a13z7 + 2a14z2 - 8a14z4 + 7a14z6 - 3a15z3 + 4a15z5 + a16z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {7, -17} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 1066. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-36 - 4q-35 + 3q-34 + 10q-33 - 24q-32 + 10q-31 + 36q-30 - 62q-29 + 15q-28 + 77q-27 - 104q-26 + 8q-25 + 116q-24 - 122q-23 - 10q-22 + 131q-21 - 105q-20 - 28q-19 + 113q-18 - 67q-17 - 36q-16 + 73q-15 - 27q-14 - 28q-13 + 33q-12 - 4q-11 - 12q-10 + 8q-9 + q-8 - 2q-7 + q-6 |
3 | q-69 - 4q-68 + 3q-67 + 6q-66 - 4q-65 - 16q-64 + 7q-63 + 39q-62 - 20q-61 - 65q-60 + 24q-59 + 118q-58 - 38q-57 - 183q-56 + 39q-55 + 277q-54 - 37q-53 - 378q-52 + 11q-51 + 490q-50 + 28q-49 - 584q-48 - 92q-47 + 661q-46 + 160q-45 - 696q-44 - 237q-43 + 701q-42 + 301q-41 - 660q-40 - 365q-39 + 601q-38 + 403q-37 - 514q-36 - 426q-35 + 407q-34 + 436q-33 - 307q-32 - 405q-31 + 187q-30 + 378q-29 - 107q-28 - 301q-27 + 16q-26 + 243q-25 + 18q-24 - 155q-23 - 56q-22 + 105q-21 + 43q-20 - 45q-19 - 41q-18 + 23q-17 + 21q-16 - 4q-15 - 12q-14 + 3q-13 + 3q-12 + q-11 - 2q-10 + q-9 |
4 | q-112 - 4q-111 + 3q-110 + 6q-109 - 8q-108 + 4q-107 - 19q-106 + 20q-105 + 29q-104 - 42q-103 + 9q-102 - 66q-101 + 80q-100 + 110q-99 - 135q-98 - 30q-97 - 175q-96 + 255q-95 + 333q-94 - 312q-93 - 230q-92 - 441q-91 + 616q-90 + 878q-89 - 479q-88 - 731q-87 - 1070q-86 + 1081q-85 + 1881q-84 - 368q-83 - 1430q-82 - 2200q-81 + 1318q-80 + 3138q-79 + 237q-78 - 1907q-77 - 3575q-76 + 1037q-75 + 4094q-74 + 1172q-73 - 1809q-72 - 4647q-71 + 331q-70 + 4344q-69 + 2008q-68 - 1196q-67 - 5038q-66 - 478q-65 + 3893q-64 + 2500q-63 - 330q-62 - 4771q-61 - 1198q-60 + 2979q-59 + 2647q-58 + 578q-57 - 3999q-56 - 1738q-55 + 1786q-54 + 2444q-53 + 1378q-52 - 2839q-51 - 1946q-50 + 539q-49 + 1837q-48 + 1821q-47 - 1497q-46 - 1656q-45 - 401q-44 + 940q-43 + 1683q-42 - 378q-41 - 962q-40 - 726q-39 + 138q-38 + 1072q-37 + 171q-36 - 279q-35 - 523q-34 - 218q-33 + 433q-32 + 197q-31 + 49q-30 - 194q-29 - 186q-28 + 92q-27 + 64q-26 + 73q-25 - 28q-24 - 67q-23 + 10q-22 + 2q-21 + 23q-20 + 2q-19 - 13q-18 + 3q-17 - 2q-16 + 3q-15 + q-14 - 2q-13 + q-12 |
5 | q-165 - 4q-164 + 3q-163 + 6q-162 - 8q-161 + q-159 - 6q-158 + 10q-157 + 17q-156 - 20q-155 - 23q-154 + 5q-153 + 19q-152 + 39q-151 + 12q-150 - 61q-149 - 101q-148 - 5q-147 + 170q-146 + 184q-145 - 18q-144 - 300q-143 - 410q-142 - 31q-141 + 657q-140 + 817q-139 + 46q-138 - 1078q-137 - 1525q-136 - 368q-135 + 1791q-134 + 2713q-133 + 892q-132 - 2537q-131 - 4411q-130 - 2072q-129 + 3315q-128 + 6721q-127 + 3899q-126 - 3764q-125 - 9456q-124 - 6640q-123 + 3698q-122 + 12370q-121 + 10117q-120 - 2753q-119 - 15075q-118 - 14217q-117 + 965q-116 + 17153q-115 + 18385q-114 + 1738q-113 - 18285q-112 - 22316q-111 - 4942q-110 + 18387q-109 + 25406q-108 + 8386q-107 - 17462q-106 - 27561q-105 - 11583q-104 + 15773q-103 + 28564q-102 + 14359q-101 - 13581q-100 - 28639q-99 - 16437q-98 + 11104q-97 + 27810q-96 + 18043q-95 - 8553q-94 - 26444q-93 - 19023q-92 + 5915q-91 + 24507q-90 + 19703q-89 - 3206q-88 - 22235q-87 - 19991q-86 + 446q-85 + 19501q-84 + 19912q-83 + 2389q-82 - 16321q-81 - 19456q-80 - 5102q-79 + 12832q-78 + 18254q-77 + 7555q-76 - 8880q-75 - 16569q-74 - 9441q-73 + 5094q-72 + 13934q-71 + 10504q-70 - 1276q-69 - 10992q-68 - 10611q-67 - 1645q-66 + 7475q-65 + 9713q-64 + 3966q-63 - 4336q-62 - 8010q-61 - 4932q-60 + 1377q-59 + 5833q-58 + 5178q-57 + 510q-56 - 3616q-55 - 4307q-54 - 1807q-53 + 1689q-52 + 3311q-51 + 2028q-50 - 368q-49 - 1953q-48 - 1881q-47 - 422q-46 + 1055q-45 + 1298q-44 + 631q-43 - 294q-42 - 807q-41 - 589q-40 + 8q-39 + 358q-38 + 388q-37 + 145q-36 - 146q-35 - 217q-34 - 95q-33 + 6q-32 + 93q-31 + 81q-30 + 2q-29 - 40q-28 - 17q-27 - 17q-26 + 5q-25 + 20q-24 + 3q-23 - 7q-22 + 2q-21 - 2q-20 - 2q-19 + 3q-18 + q-17 - 2q-16 + q-15 |
6 | q-228 - 4q-227 + 3q-226 + 6q-225 - 8q-224 - 3q-222 + 14q-221 - 16q-220 - 2q-219 + 39q-218 - 42q-217 - 4q-216 + 2q-215 + 57q-214 - 41q-213 - 35q-212 + 100q-211 - 140q-210 - 20q-209 + 64q-208 + 248q-207 - 79q-206 - 169q-205 + 89q-204 - 504q-203 - 74q-202 + 376q-201 + 1014q-200 + 158q-199 - 527q-198 - 506q-197 - 1941q-196 - 613q-195 + 1353q-194 + 3625q-193 + 2006q-192 - 656q-191 - 2762q-190 - 6736q-189 - 3705q-188 + 2700q-187 + 10343q-186 + 9133q-185 + 2273q-184 - 6914q-183 - 18678q-182 - 14669q-181 + 838q-180 + 22137q-179 + 27114q-178 + 15411q-177 - 8703q-176 - 39411q-175 - 40753q-174 - 13203q-173 + 33653q-172 + 57844q-171 + 47459q-170 + 2693q-169 - 61888q-168 - 83258q-167 - 49065q-166 + 31675q-165 + 91783q-164 + 98405q-163 + 37579q-162 - 70153q-161 - 129424q-160 - 104830q-159 + 5020q-158 + 110215q-157 + 152282q-156 + 92208q-155 - 52386q-154 - 158190q-153 - 161908q-152 - 41454q-151 + 101207q-150 + 186918q-149 + 146792q-148 - 14279q-147 - 158247q-146 - 198592q-145 - 88400q-144 + 71194q-143 + 192656q-142 + 181743q-141 + 26139q-140 - 136562q-139 - 207712q-138 - 119619q-137 + 36403q-136 + 177073q-135 + 192865q-134 + 56166q-133 - 107215q-132 - 197392q-131 - 133783q-130 + 6344q-129 + 152178q-128 + 188492q-127 + 76464q-126 - 76882q-125 - 177616q-124 - 138757q-123 - 20779q-122 + 122336q-121 + 176291q-120 + 93488q-119 - 43178q-118 - 150494q-117 - 139215q-116 - 49577q-115 + 84670q-114 + 155711q-113 + 108395q-112 - 3359q-111 - 112182q-110 - 131152q-109 - 77814q-108 + 37707q-107 + 121253q-106 + 113524q-105 + 37275q-104 - 61777q-103 - 106650q-102 - 94527q-101 - 10940q-100 + 72032q-99 + 98738q-98 + 64897q-97 - 8764q-96 - 64499q-95 - 87954q-94 - 45268q-93 + 19104q-92 + 63094q-91 + 66699q-90 + 29079q-89 - 17154q-88 - 58073q-87 - 52186q-86 - 18491q-85 + 20800q-84 + 44006q-83 + 38976q-82 + 15622q-81 - 20922q-80 - 34705q-79 - 28920q-78 - 8018q-77 + 14209q-76 + 25770q-75 + 23531q-74 + 3647q-73 - 10973q-72 - 18731q-71 - 14862q-70 - 4181q-69 + 7614q-68 + 14519q-67 + 9264q-66 + 2619q-65 - 5186q-64 - 8412q-63 - 7223q-62 - 1819q-61 + 4099q-60 + 4838q-59 + 4331q-58 + 1087q-57 - 1710q-56 - 3504q-55 - 2577q-54 - 232q-53 + 759q-52 + 1806q-51 + 1363q-50 + 517q-49 - 718q-48 - 945q-47 - 484q-46 - 312q-45 + 267q-44 + 417q-43 + 399q-42 - 8q-41 - 145q-40 - 92q-39 - 169q-38 - 30q-37 + 45q-36 + 109q-35 + 12q-34 - 11q-33 + 12q-32 - 33q-31 - 15q-30 - 4q-29 + 22q-28 - 6q-26 + 8q-25 - 3q-24 - 2q-23 - 2q-22 + 3q-21 + q-20 - 2q-19 + q-18 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 66]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], > X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], X[19, 12, 20, 13], > X[13, 8, 14, 9], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 66]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, 7, -8, > 6] |
In[4]:= | DTCode[Knot[10, 66]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, 18, 8, 6, 20, 12] |
In[5]:= | br = BR[Knot[10, 66]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 66]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 66]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 66]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 66]][t] |
Out[10]= | 3 9 16 2 3 -19 + -- - -- + -- + 16 t - 9 t + 3 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 66]][z] |
Out[11]= | 2 4 6 1 + 7 z + 9 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 66], Knot[11, Alternating, 245]} |
In[13]:= | {KnotDet[Knot[10, 66]], KnotSignature[Knot[10, 66]]} |
Out[13]= | {75, -6} |
In[14]:= | Jones[Knot[10, 66]][q] |
Out[14]= | -13 4 7 10 12 13 11 8 6 2 -3 q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q 12 11 10 9 8 7 6 5 4 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 66]} |
In[16]:= | A2Invariant[Knot[10, 66]][q] |
Out[16]= | -40 2 -34 2 3 2 2 3 2 3 -12 -10 q - --- + q - --- - --- + --- - --- + --- + --- + --- - q + q 36 32 26 24 22 20 18 14 q q q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 66]][a, z] |
Out[17]= | 6 8 10 12 6 2 8 2 10 2 12 2 6 4 2 a + 2 a - 4 a + a + 5 a z + 9 a z - 8 a z + a z + 4 a z + 8 4 10 4 6 6 8 6 > 8 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 66]][a, z] |
Out[18]= | 6 8 10 12 7 9 11 6 2 8 2 -2 a + 2 a + 4 a + a + a z - 5 a z - 6 a z + 5 a z - 6 a z - 10 2 12 2 14 2 7 3 9 3 11 3 13 3 > 8 a z + 5 a z + 2 a z + 2 a z + 20 a z + 22 a z + a z - 15 3 6 4 8 4 10 4 12 4 14 4 16 4 > 3 a z - 4 a z + 8 a z + 8 a z - 13 a z - 8 a z + a z - 7 5 9 5 11 5 13 5 15 5 6 6 8 6 > 5 a z - 22 a z - 28 a z - 7 a z + 4 a z + a z - 8 a z - 10 6 12 6 14 6 7 7 9 7 11 7 > 13 a z + 3 a z + 7 a z + 2 a z + 6 a z + 11 a z + 13 7 8 8 10 8 12 8 9 9 11 9 > 7 a z + 3 a z + 7 a z + 4 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]} |
Out[19]= | {7, -17} |
In[20]:= | Kh[Knot[10, 66]][q, t] |
Out[20]= | -7 -5 1 3 1 4 3 6 4 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 27 10 25 9 23 9 23 8 21 8 21 7 19 7 q t q t q t q t q t q t q t 6 6 7 6 4 7 4 4 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 19 6 17 6 17 5 15 5 15 4 13 4 13 3 11 3 q t q t q t q t q t q t q t q t 2 4 2 > ------ + ----- + ---- 11 2 9 2 7 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 66], 2][q] |
Out[21]= | -36 4 3 10 24 10 36 62 15 77 104 8 116 q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - 35 34 33 32 31 30 29 28 27 26 25 24 q q q q q q q q q q q q 122 10 131 105 28 113 67 36 73 27 28 33 > --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 23 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q q 4 12 8 -8 2 -6 > --- - --- + -- + q - -- + q 11 10 9 7 q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1066 |
|