© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1032Visit 1032's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1032's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X5,14,6,15 X15,20,16,1 X7,17,8,16 X19,7,20,6 X9,19,10,18 X17,9,18,8 X13,10,14,11 X11,2,12,3 |
Gauss Code: | {-1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8, 7, -6, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 12 14 16 18 2 10 20 8 6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 8t-2 - 15t-1 + 19 - 15t + 8t2 - 2t3 |
Conway Polynomial: | 1 - z2 - 4z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {69, 0} |
Jones Polynomial: | q-6 - 3q-5 + 5q-4 - 8q-3 + 11q-2 - 11q-1 + 11 - 9q + 6q2 - 3q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-18 - q-16 - 2q-10 + 3q-8 + q-4 + q-2 - 2 + 2q2 - 2q4 + q6 + q8 - q10 + q12 |
HOMFLY-PT Polynomial: | a-2 + 2a-2z2 + a-2z4 - 1 - 3z2 - 3z4 - z6 + a2 - 2a2z2 - 3a2z4 - a2z6 + 2a4z2 + a4z4 |
Kauffman Polynomial: | - a-4z2 + a-4z4 + a-3z - 3a-3z3 + 3a-3z5 - a-2 + 4a-2z2 - 6a-2z4 + 5a-2z6 + a-1z - 4a-1z5 + 5a-1z7 - 1 + 7z2 - 11z4 + 3z6 + 3z8 - az + 7az3 - 15az5 + 7az7 + az9 - a2 + 2a2z4 - 10a2z6 + 6a2z8 - 2a3z + 13a3z3 - 18a3z5 + 5a3z7 + a3z9 + 3a4z4 - 7a4z6 + 3a4z8 - a5z + 9a5z3 - 10a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1032. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 3q-17 + 10q-15 - 12q-14 - 8q-13 + 33q-12 - 21q-11 - 32q-10 + 65q-9 - 22q-8 - 66q-7 + 93q-6 - 11q-5 - 95q-4 + 101q-3 + 6q-2 - 103q-1 + 86 + 16q - 83q2 + 55q3 + 15q4 - 47q5 + 25q6 + 8q7 - 17q8 + 7q9 + 2q10 - 3q11 + q12 |
3 | q-36 - 3q-35 + 5q-33 + 5q-32 - 12q-31 - 14q-30 + 19q-29 + 32q-28 - 23q-27 - 61q-26 + 18q-25 + 99q-24 + 3q-23 - 144q-22 - 37q-21 + 181q-20 + 94q-19 - 215q-18 - 157q-17 + 230q-16 + 231q-15 - 231q-14 - 308q-13 + 222q-12 + 370q-11 - 187q-10 - 439q-9 + 158q-8 + 476q-7 - 104q-6 - 511q-5 + 67q-4 + 504q-3 - 11q-2 - 489q-1 - 22 + 437q + 54q2 - 374q3 - 68q4 + 299q5 + 70q6 - 224q7 - 62q8 + 158q9 + 49q10 - 107q11 - 32q12 + 65q13 + 22q14 - 39q15 - 12q16 + 21q17 + 6q18 - 11q19 - q20 + 3q21 + 2q22 - 3q23 + q24 |
4 | q-60 - 3q-59 + 5q-57 + 5q-55 - 19q-54 - 7q-53 + 20q-52 + 11q-51 + 38q-50 - 61q-49 - 58q-48 + 22q-47 + 44q-46 + 165q-45 - 88q-44 - 178q-43 - 83q-42 + 23q-41 + 439q-40 + 32q-39 - 274q-38 - 358q-37 - 223q-36 + 742q-35 + 369q-34 - 125q-33 - 666q-32 - 786q-31 + 825q-30 + 775q-29 + 376q-28 - 748q-27 - 1508q-26 + 561q-25 + 1000q-24 + 1091q-23 - 495q-22 - 2134q-21 + 51q-20 + 945q-19 + 1791q-18 - 9q-17 - 2525q-16 - 536q-15 + 687q-14 + 2346q-13 + 544q-12 - 2661q-11 - 1070q-10 + 313q-9 + 2661q-8 + 1061q-7 - 2503q-6 - 1448q-5 - 138q-4 + 2626q-3 + 1438q-2 - 2029q-1 - 1519 - 569q + 2168q2 + 1523q3 - 1341q4 - 1217q5 - 800q6 + 1438q7 + 1248q8 - 707q9 - 700q10 - 726q11 + 754q12 + 776q13 - 323q14 - 261q15 - 465q16 + 330q17 + 367q18 - 159q19 - 43q20 - 224q21 + 133q22 + 141q23 - 84q24 + 12q25 - 87q26 + 51q27 + 46q28 - 39q29 + 13q30 - 26q31 + 15q32 + 12q33 - 13q34 + 5q35 - 5q36 + 3q37 + 2q38 - 3q39 + q40 |
5 | q-90 - 3q-89 + 5q-87 - 2q-84 - 12q-83 - 7q-82 + 20q-81 + 21q-80 + 8q-79 - 9q-78 - 50q-77 - 54q-76 + 16q-75 + 93q-74 + 103q-73 + 31q-72 - 117q-71 - 229q-70 - 136q-69 + 128q-68 + 363q-67 + 337q-66 - 24q-65 - 493q-64 - 658q-63 - 231q-62 + 540q-61 + 1030q-60 + 695q-59 - 375q-58 - 1384q-57 - 1357q-56 - 74q-55 + 1555q-54 + 2125q-53 + 880q-52 - 1420q-51 - 2839q-50 - 1962q-49 + 807q-48 + 3324q-47 + 3251q-46 + 228q-45 - 3394q-44 - 4462q-43 - 1725q-42 + 2932q-41 + 5526q-40 + 3432q-39 - 1972q-38 - 6153q-37 - 5229q-36 + 526q-35 + 6365q-34 + 6950q-33 + 1175q-32 - 6148q-31 - 8373q-30 - 3062q-29 + 5520q-28 + 9620q-27 + 4915q-26 - 4740q-25 - 10464q-24 - 6674q-23 + 3685q-22 + 11195q-21 + 8303q-20 - 2728q-19 - 11570q-18 - 9750q-17 + 1564q-16 + 11898q-15 + 11049q-14 - 529q-13 - 11847q-12 - 12149q-11 - 736q-10 + 11683q-9 + 13001q-8 + 1901q-7 - 10991q-6 - 13532q-5 - 3240q-4 + 10042q-3 + 13626q-2 + 4379q-1 - 8582 - 13168q - 5436q2 + 6893q3 + 12178q4 + 6067q5 - 5016q6 - 10665q7 - 6282q8 + 3212q9 + 8808q10 + 6010q11 - 1668q12 - 6822q13 - 5306q14 + 521q15 + 4905q16 + 4337q17 + 208q18 - 3284q19 - 3280q20 - 517q21 + 2023q22 + 2264q23 + 587q24 - 1147q25 - 1471q26 - 469q27 + 614q28 + 856q29 + 327q30 - 308q31 - 475q32 - 187q33 + 157q34 + 243q35 + 94q36 - 88q37 - 122q38 - 26q39 + 43q40 + 52q41 + 19q42 - 33q43 - 34q44 + 12q45 + 17q46 - 2q47 + 9q48 - 8q49 - 15q50 + 11q51 + 6q52 - 7q53 + 3q54 + q55 - 5q56 + 3q57 + 2q58 - 3q59 + q60 |
6 | q-126 - 3q-125 + 5q-123 - 7q-120 + 5q-119 - 12q-118 - 7q-117 + 29q-116 + 12q-115 + 9q-114 - 30q-113 + 2q-112 - 57q-111 - 50q-110 + 76q-109 + 80q-108 + 98q-107 - 33q-106 + 15q-105 - 223q-104 - 277q-103 + 27q-102 + 192q-101 + 416q-100 + 219q-99 + 313q-98 - 437q-97 - 904q-96 - 593q-95 - 111q-94 + 771q-93 + 988q-92 + 1651q-91 + 120q-90 - 1464q-89 - 2122q-88 - 1887q-87 - 183q-86 + 1380q-85 + 4282q-84 + 2883q-83 + 89q-82 - 3062q-81 - 5094q-80 - 4247q-79 - 1449q-78 + 5783q-77 + 7349q-76 + 5815q-75 + 306q-74 - 6174q-73 - 10236q-72 - 9606q-71 + 1510q-70 + 8744q-69 + 13583q-68 + 9995q-67 + 312q-66 - 12162q-65 - 19881q-64 - 10285q-63 + 1102q-62 + 16265q-61 + 21777q-60 + 15615q-59 - 3790q-58 - 24292q-57 - 24473q-56 - 16177q-55 + 7649q-54 + 27250q-53 + 33809q-52 + 14804q-51 - 16977q-50 - 32612q-49 - 36634q-48 - 11463q-47 + 21237q-46 + 46584q-45 + 36906q-44 + 617q-43 - 30301q-42 - 52415q-41 - 34274q-40 + 5807q-39 + 50146q-38 + 55246q-37 + 21879q-36 - 19911q-35 - 60363q-34 - 54141q-33 - 12762q-32 + 46732q-31 + 67133q-30 + 40979q-29 - 6934q-28 - 62481q-27 - 68790q-26 - 29556q-25 + 40667q-24 + 74131q-23 + 56198q-22 + 5092q-21 - 61872q-20 - 79406q-19 - 43669q-18 + 33829q-17 + 78120q-16 + 68635q-15 + 16521q-14 - 58801q-13 - 86850q-12 - 56510q-11 + 24454q-10 + 77935q-9 + 78463q-8 + 29319q-7 - 50302q-6 - 88763q-5 - 67824q-4 + 10175q-3 + 69733q-2 + 82343q-1 + 42712 - 34022q - 80674q2 - 73368q3 - 7291q4 + 51540q5 + 75348q6 + 51339q7 - 12969q8 - 61209q9 - 67829q10 - 21191q11 + 27752q12 + 56779q13 + 49423q14 + 4784q15 - 36080q16 - 51118q17 - 25188q18 + 7408q19 + 33255q20 + 37220q21 + 12727q22 - 14793q23 - 30304q24 - 19617q25 - 3221q26 + 14012q27 + 21583q28 + 11446q29 - 2951q30 - 13770q31 - 10652q32 - 5075q33 + 3504q34 + 9562q35 + 6538q36 + 780q37 - 4755q38 - 3921q39 - 3161q40 - 43q41 + 3271q42 + 2600q43 + 833q44 - 1333q45 - 794q46 - 1257q47 - 479q48 + 933q49 + 731q50 + 292q51 - 406q52 + 75q53 - 344q54 - 255q55 + 276q56 + 144q57 + 39q58 - 170q59 + 137q60 - 63q61 - 97q62 + 94q63 + 22q64 - 7q65 - 74q66 + 68q67 - 7q68 - 34q69 + 31q70 + q71 - q72 - 26q73 + 22q74 + 2q75 - 13q76 + 9q77 - q78 + q79 - 5q80 + 3q81 + 2q82 - 3q83 + q84 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 32]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[15, 20, 16, 1], > X[7, 17, 8, 16], X[19, 7, 20, 6], X[9, 19, 10, 18], X[17, 9, 18, 8], > X[13, 10, 14, 11], X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[10, 32]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8, 7, -6, > 4] |
In[4]:= | DTCode[Knot[10, 32]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 2, 10, 20, 8, 6] |
In[5]:= | br = BR[Knot[10, 32]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, -2, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 32]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 32]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 32]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 32]][t] |
Out[10]= | 2 8 15 2 3 19 - -- + -- - -- - 15 t + 8 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 32]][z] |
Out[11]= | 2 4 6 1 - z - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 32]} |
In[13]:= | {KnotDet[Knot[10, 32]], KnotSignature[Knot[10, 32]]} |
Out[13]= | {69, 0} |
In[14]:= | Jones[Knot[10, 32]][q] |
Out[14]= | -6 3 5 8 11 11 2 3 4 11 + q - -- + -- - -- + -- - -- - 9 q + 6 q - 3 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 32]} |
In[16]:= | A2Invariant[Knot[10, 32]][q] |
Out[16]= | -18 -16 2 3 -4 -2 2 4 6 8 10 12 -2 + q - q - --- + -- + q + q + 2 q - 2 q + q + q - q + q 10 8 q q |
In[17]:= | HOMFLYPT[Knot[10, 32]][a, z] |
Out[17]= | 2 4 -2 2 2 2 z 2 2 4 2 4 z 2 4 4 4 -1 + a + a - 3 z + ---- - 2 a z + 2 a z - 3 z + -- - 3 a z + a z - 2 2 a a 6 2 6 > z - a z |
In[18]:= | Kauffman[Knot[10, 32]][a, z] |
Out[18]= | 2 2 -2 2 z z 3 5 2 z 4 z 6 2 -1 - a - a + -- + - - a z - 2 a z - a z + 7 z - -- + ---- + 2 a z - 3 a 4 2 a a a 3 4 4 3 z 3 3 3 5 3 4 z 6 z 2 4 > ---- + 7 a z + 13 a z + 9 a z - 11 z + -- - ---- + 2 a z + 3 4 2 a a a 5 5 4 4 6 4 3 z 4 z 5 3 5 5 5 6 > 3 a z - 3 a z + ---- - ---- - 15 a z - 18 a z - 10 a z + 3 z + 3 a a 6 7 5 z 2 6 4 6 6 6 5 z 7 3 7 5 7 > ---- - 10 a z - 7 a z + a z + ---- + 7 a z + 5 a z + 3 a z + 2 a a 8 2 8 4 8 9 3 9 > 3 z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 32]], Vassiliev[3][Knot[10, 32]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[10, 32]][q, t] |
Out[20]= | 6 1 2 1 3 2 5 3 6 - + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 5 5 6 3 3 2 5 2 5 3 7 3 > ----- + ---- + --- + 4 q t + 5 q t + 2 q t + 4 q t + q t + 2 q t + 3 2 3 q t q t q t 9 4 > q t |
In[21]:= | ColouredJones[Knot[10, 32], 2][q] |
Out[21]= | -18 3 10 12 8 33 21 32 65 22 66 93 11 86 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + -- - -- - 17 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 95 101 6 103 2 3 4 5 6 7 > -- + --- + -- - --- + 16 q - 83 q + 55 q + 15 q - 47 q + 25 q + 8 q - 4 3 2 q q q q 8 9 10 11 12 > 17 q + 7 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1032 |
|