© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1024Visit 1024's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1024's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,16,6,17 X9,20,10,1 X19,6,20,7 X7,18,8,19 X17,8,18,9 X15,10,16,11 |
Gauss Code: | {-1, 4, -3, 1, -5, 7, -8, 9, -6, 10, -2, 3, -4, 2, -10, 5, -9, 8, -7, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 12 16 18 20 14 2 10 8 6 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 4t-2 + 14t-1 - 19 + 14t - 4t2 |
Conway Polynomial: | 1 - 2z2 - 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {1018, ...} |
Determinant and Signature: | {55, -2} |
Jones Polynomial: | q-9 - 2q-8 + 4q-7 - 7q-6 + 8q-5 - 9q-4 + 9q-3 - 7q-2 + 5q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-28 + 2q-22 - 2q-20 - q-18 - 2q-14 + q-12 - q-10 + q-8 + q-6 - q-4 + 3q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 + a2 - a2z4 - a4 - 3a4z2 - 2a4z4 - a6 - a6z2 - a6z4 + a8 + a8z2 |
Kauffman Polynomial: | 1 - 2z2 + z4 - 2az3 + 2az5 - a2 + 2a2z2 - 3a2z4 + 3a2z6 + 2a3z - 2a3z5 + 3a3z7 - a4 + 5a4z2 - 5a4z4 + a4z6 + 2a4z8 + 4a5z - 7a5z3 + a5z5 + a5z7 + a5z9 + a6 - 5a6z2 + 6a6z4 - 8a6z6 + 4a6z8 - 2a7z3 - 2a7z5 + a7z9 + a8 - 2a8z2 + 3a8z4 - 5a8z6 + 2a8z8 - 2a9z + 7a9z3 - 7a9z5 + 2a9z7 + 4a10z2 - 4a10z4 + a10z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 5} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1024. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-26 - 2q-25 + 6q-23 - 8q-22 - 5q-21 + 21q-20 - 14q-19 - 20q-18 + 43q-17 - 15q-16 - 42q-15 + 60q-14 - 7q-13 - 61q-12 + 65q-11 + 3q-10 - 67q-9 + 56q-8 + 9q-7 - 53q-6 + 36q-5 + 9q-4 - 29q-3 + 16q-2 + 4q-1 - 10 + 5q + q2 - 2q3 + q4 |
3 | q-51 - 2q-50 + 2q-48 + 3q-47 - 7q-46 - 5q-45 + 9q-44 + 16q-43 - 15q-42 - 28q-41 + 11q-40 + 52q-39 - 5q-38 - 73q-37 - 15q-36 + 96q-35 + 44q-34 - 116q-33 - 75q-32 + 120q-31 + 119q-30 - 124q-29 - 154q-28 + 109q-27 + 196q-26 - 99q-25 - 221q-24 + 72q-23 + 250q-22 - 52q-21 - 262q-20 + 28q-19 + 263q-18 - 3q-17 - 254q-16 - 13q-15 + 224q-14 + 33q-13 - 194q-12 - 34q-11 + 147q-10 + 39q-9 - 112q-8 - 27q-7 + 70q-6 + 26q-5 - 52q-4 - 8q-3 + 25q-2 + 9q-1 - 19 + 8q2 + 2q3 - 7q4 + 2q5 + q6 + q7 - 2q8 + q9 |
4 | q-84 - 2q-83 + 2q-81 - q-80 + 4q-79 - 9q-78 - q-77 + 10q-76 - q-75 + 16q-74 - 29q-73 - 18q-72 + 20q-71 + 11q-70 + 66q-69 - 53q-68 - 71q-67 - 12q-66 + 11q-65 + 190q-64 - 19q-63 - 125q-62 - 127q-61 - 89q-60 + 342q-59 + 118q-58 - 70q-57 - 264q-56 - 343q-55 + 398q-54 + 289q-53 + 151q-52 - 290q-51 - 673q-50 + 282q-49 + 373q-48 + 475q-47 - 154q-46 - 952q-45 + 49q-44 + 323q-43 + 786q-42 + 85q-41 - 1112q-40 - 214q-39 + 183q-38 + 1028q-37 + 339q-36 - 1165q-35 - 444q-34 + 12q-33 + 1165q-32 + 562q-31 - 1102q-30 - 604q-29 - 176q-28 + 1151q-27 + 718q-26 - 898q-25 - 633q-24 - 352q-23 + 942q-22 + 741q-21 - 586q-20 - 493q-19 - 435q-18 + 602q-17 + 589q-16 - 295q-15 - 249q-14 - 371q-13 + 286q-12 + 346q-11 - 127q-10 - 54q-9 - 222q-8 + 106q-7 + 146q-6 - 68q-5 + 27q-4 - 95q-3 + 37q-2 + 46q-1 - 43 + 30q - 32q2 + 16q3 + 13q4 - 24q5 + 15q6 - 9q7 + 6q8 + 4q9 - 9q10 + 5q11 - 2q12 + q13 + q14 - 2q15 + q16 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 24]] |
Out[2]= | PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], > X[5, 16, 6, 17], X[9, 20, 10, 1], X[19, 6, 20, 7], X[7, 18, 8, 19], > X[17, 8, 18, 9], X[15, 10, 16, 11]] |
In[3]:= | GaussCode[Knot[10, 24]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 7, -8, 9, -6, 10, -2, 3, -4, 2, -10, 5, -9, 8, -7, > 6] |
In[4]:= | DTCode[Knot[10, 24]] |
Out[4]= | DTCode[4, 12, 16, 18, 20, 14, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 24]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -2, -2, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 24]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 24]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 24]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 24]][t] |
Out[10]= | 4 14 2 -19 - -- + -- + 14 t - 4 t 2 t t |
In[11]:= | Conway[Knot[10, 24]][z] |
Out[11]= | 2 4 1 - 2 z - 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 18], Knot[10, 24]} |
In[13]:= | {KnotDet[Knot[10, 24]], KnotSignature[Knot[10, 24]]} |
Out[13]= | {55, -2} |
In[14]:= | Jones[Knot[10, 24]][q] |
Out[14]= | -9 2 4 7 8 9 9 7 5 -2 + q - -- + -- - -- + -- - -- + -- - -- + - + q 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 24]} |
In[16]:= | A2Invariant[Knot[10, 24]][q] |
Out[16]= | -28 2 2 -18 2 -12 -10 -8 -6 -4 3 4 q + --- - --- - q - --- + q - q + q + q - q + -- + q 22 20 14 2 q q q q |
In[17]:= | HOMFLYPT[Knot[10, 24]][a, z] |
Out[17]= | 2 4 6 8 2 4 2 6 2 8 2 2 4 4 4 6 4 1 + a - a - a + a + z - 3 a z - a z + a z - a z - 2 a z - a z |
In[18]:= | Kauffman[Knot[10, 24]][a, z] |
Out[18]= | 2 4 6 8 3 5 9 2 2 2 4 2 1 - a - a + a + a + 2 a z + 4 a z - 2 a z - 2 z + 2 a z + 5 a z - 6 2 8 2 10 2 3 5 3 7 3 9 3 4 > 5 a z - 2 a z + 4 a z - 2 a z - 7 a z - 2 a z + 7 a z + z - 2 4 4 4 6 4 8 4 10 4 5 3 5 > 3 a z - 5 a z + 6 a z + 3 a z - 4 a z + 2 a z - 2 a z + 5 5 7 5 9 5 2 6 4 6 6 6 8 6 10 6 > a z - 2 a z - 7 a z + 3 a z + a z - 8 a z - 5 a z + a z + 3 7 5 7 9 7 4 8 6 8 8 8 5 9 7 9 > 3 a z + a z + 2 a z + 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 24]], Vassiliev[3][Knot[10, 24]]} |
Out[19]= | {-2, 5} |
In[20]:= | Kh[Knot[10, 24]][q, t] |
Out[20]= | 2 4 1 1 1 3 1 4 3 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 q q t q t q t q t q t q t q t 4 4 5 4 4 5 3 4 t > ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - + q t + 11 4 9 4 9 3 7 3 7 2 5 2 5 3 q q t q t q t q t q t q t q t q t 3 2 > q t |
In[21]:= | ColouredJones[Knot[10, 24], 2][q] |
Out[21]= | -26 2 6 8 5 21 14 20 43 15 42 60 -10 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 25 23 22 21 20 19 18 17 16 15 14 q q q q q q q q q q q 7 61 65 3 67 56 9 53 36 9 29 16 4 > --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- + -- + - + 5 q + 13 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q q 2 3 4 > q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1024 |
|