© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1011Visit 1011's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1011's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X11,16,12,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X7,18,8,19 X9,20,10,1 X19,8,20,9 X17,10,18,11 |
Gauss Code: | {-1, 6, -4, 5, -3, 1, -7, 9, -8, 10, -2, 3, -5, 4, -6, 2, -10, 7, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 6 14 12 18 20 16 4 2 10 8 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 4t-2 + 11t-1 - 13 + 11t - 4t2 |
Conway Polynomial: | 1 - 5z2 - 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {43, -2} |
Jones Polynomial: | q-7 - 2q-6 + 4q-5 - 6q-4 + 7q-3 - 7q-2 + 6q-1 - 5 + 3q - q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 + 2q-16 - q-14 - q-8 + q-6 - 2q-4 - 1 - q2 + 2q4 + q6 + q8 + q10 |
HOMFLY-PT Polynomial: | 2a-2 + a-2z2 - 1 - 2z2 - z4 - a2 - 4a2z2 - 2a2z4 - a4z2 - a4z4 + a6 + a6z2 |
Kauffman Polynomial: | - 2a-2 + 7a-2z2 - 5a-2z4 + a-2z6 + a-1z + a-1z3 - 3a-1z5 + a-1z7 - 1 + 2z2 - z4 - 2z6 + z8 + 5az - 16az3 + 11az5 - 4az7 + az9 + a2 - 12a2z2 + 16a2z4 - 10a2z6 + 3a2z8 + 2a3z - 5a3z3 + 5a3z5 - 2a3z7 + a3z9 + 5a4z4 - 4a4z6 + 2a4z8 - 2a5z + 9a5z3 - 7a5z5 + 3a5z7 - a6 + 5a6z2 - 6a6z4 + 3a6z6 - 3a7z3 + 2a7z5 - 2a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-5, 4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1011. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 2q-19 + q-18 + 4q-17 - 8q-16 + 2q-15 + 12q-14 - 19q-13 + 2q-12 + 27q-11 - 32q-10 - q-9 + 39q-8 - 37q-7 - 5q-6 + 41q-5 - 31q-4 - 10q-3 + 35q-2 - 19q-1 - 12 + 23q - 8q2 - 9q3 + 10q4 - 2q5 - 4q6 + 3q7 - q9 + q10 |
3 | q-39 - 2q-38 + q-37 + q-36 + q-35 - 5q-34 + q-33 + 5q-32 + q-31 - 11q-30 + 2q-29 + 14q-28 + q-27 - 27q-26 + q-25 + 39q-24 + 4q-23 - 56q-22 - 12q-21 + 76q-20 + 20q-19 - 90q-18 - 32q-17 + 101q-16 + 43q-15 - 105q-14 - 53q-13 + 103q-12 + 60q-11 - 95q-10 - 67q-9 + 84q-8 + 69q-7 - 66q-6 - 74q-5 + 52q-4 + 72q-3 - 34q-2 - 68q-1 + 17 + 61q - 4q2 - 48q3 - 7q4 + 38q5 + 8q6 - 20q7 - 14q8 + 16q9 + 6q10 - 4q11 - 8q12 + 5q13 + q14 - 3q16 + 2q17 - q20 + q21 |
4 | q-64 - 2q-63 + q-62 + q-61 - 2q-60 + 4q-59 - 7q-58 + 3q-57 + 4q-56 - 7q-55 + 13q-54 - 16q-53 + 5q-52 + 8q-51 - 19q-50 + 28q-49 - 27q-48 + 16q-47 + 17q-46 - 43q-45 + 33q-44 - 52q-43 + 49q-42 + 59q-41 - 70q-40 + 8q-39 - 122q-38 + 92q-37 + 154q-36 - 61q-35 - 30q-34 - 255q-33 + 103q-32 + 274q-31 - 43q-29 - 398q-28 + 67q-27 + 350q-26 + 77q-25 - 8q-24 - 484q-23 + 8q-22 + 355q-21 + 126q-20 + 48q-19 - 492q-18 - 41q-17 + 303q-16 + 141q-15 + 109q-14 - 443q-13 - 81q-12 + 216q-11 + 138q-10 + 171q-9 - 356q-8 - 118q-7 + 104q-6 + 119q-5 + 226q-4 - 238q-3 - 132q-2 - 6q-1 + 66 + 238q - 106q2 - 98q3 - 75q4 - 7q5 + 188q6 - 13q7 - 33q8 - 74q9 - 52q10 + 100q11 + 15q12 + 16q13 - 35q14 - 49q15 + 35q16 + 3q17 + 22q18 - 5q19 - 24q20 + 11q21 - 7q22 + 10q23 + 2q24 - 8q25 + 6q26 - 5q27 + 2q28 + q29 - 3q30 + 3q31 - q32 - q35 + q36 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 11]] |
Out[2]= | PD[X[1, 6, 2, 7], X[11, 16, 12, 17], X[5, 13, 6, 12], X[3, 15, 4, 14], > X[13, 5, 14, 4], X[15, 3, 16, 2], X[7, 18, 8, 19], X[9, 20, 10, 1], > X[19, 8, 20, 9], X[17, 10, 18, 11]] |
In[3]:= | GaussCode[Knot[10, 11]] |
Out[3]= | GaussCode[-1, 6, -4, 5, -3, 1, -7, 9, -8, 10, -2, 3, -5, 4, -6, 2, -10, 7, -9, > 8] |
In[4]:= | DTCode[Knot[10, 11]] |
Out[4]= | DTCode[6, 14, 12, 18, 20, 16, 4, 2, 10, 8] |
In[5]:= | br = BR[Knot[10, 11]] |
Out[5]= | BR[5, {-1, -1, -1, -1, -2, 1, 3, -2, 3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 11]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 11]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 11]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 11]][t] |
Out[10]= | 4 11 2 -13 - -- + -- + 11 t - 4 t 2 t t |
In[11]:= | Conway[Knot[10, 11]][z] |
Out[11]= | 2 4 1 - 5 z - 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 11]} |
In[13]:= | {KnotDet[Knot[10, 11]], KnotSignature[Knot[10, 11]]} |
Out[13]= | {43, -2} |
In[14]:= | Jones[Knot[10, 11]][q] |
Out[14]= | -7 2 4 6 7 7 6 2 3 -5 + q - -- + -- - -- + -- - -- + - + 3 q - q + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 11]} |
In[16]:= | A2Invariant[Knot[10, 11]][q] |
Out[16]= | -22 2 -14 -8 -6 2 2 4 6 8 10 -1 + q + --- - q - q + q - -- - q + 2 q + q + q + q 16 4 q q |
In[17]:= | HOMFLYPT[Knot[10, 11]][a, z] |
Out[17]= | 2 2 2 6 2 z 2 2 4 2 6 2 4 2 4 4 4 -1 + -- - a + a - 2 z + -- - 4 a z - a z + a z - z - 2 a z - a z 2 2 a a |
In[18]:= | Kauffman[Knot[10, 11]][a, z] |
Out[18]= | 2 2 2 6 z 3 5 2 7 z 2 2 -1 - -- + a - a + - + 5 a z + 2 a z - 2 a z + 2 z + ---- - 12 a z + 2 a 2 a a 3 6 2 8 2 z 3 3 3 5 3 7 3 4 > 5 a z - 2 a z + -- - 16 a z - 5 a z + 9 a z - 3 a z - z - a 4 5 5 z 2 4 4 4 6 4 8 4 3 z 5 3 5 > ---- + 16 a z + 5 a z - 6 a z + a z - ---- + 11 a z + 5 a z - 2 a a 6 7 5 5 7 5 6 z 2 6 4 6 6 6 z > 7 a z + 2 a z - 2 z + -- - 10 a z - 4 a z + 3 a z + -- - 2 a a 7 3 7 5 7 8 2 8 4 8 9 3 9 > 4 a z - 2 a z + 3 a z + z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 11]], Vassiliev[3][Knot[10, 11]]} |
Out[19]= | {-5, 4} |
In[20]:= | Kh[Knot[10, 11]][q, t] |
Out[20]= | 3 4 1 1 1 3 1 3 3 4 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 3 3 4 3 t 3 2 3 3 7 4 > ----- + ---- + ---- + --- + 2 q t + 3 q t + q t + q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[10, 11], 2][q] |
Out[21]= | -20 2 -18 4 8 2 12 19 2 27 32 -9 -12 + q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- - q + 19 17 16 15 14 13 12 11 10 q q q q q q q q q 39 37 5 41 31 10 35 19 2 3 4 5 > -- - -- - -- + -- - -- - -- + -- - -- + 23 q - 8 q - 9 q + 10 q - 2 q - 8 7 6 5 4 3 2 q q q q q q q q 6 7 9 10 > 4 q + 3 q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1011 |
|