© | Dror Bar-Natan: The Knot Atlas: Torus Knots: |
|
![]() TubePlot |
This page is passe. Go here
instead!
The 5-Crossing Torus Knot T(5,2)Also known as "The Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. 1), as "The Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", and as 51. Visit T(5,2)'s page at Knotilus! |
Further views: |
![]() The VISA Interlink Logo |
![]() A shirt seen in Lisboa |
![]() A pentagonal table by Bob Mackay |
PD Presentation: | X3948 X9,5,10,4 X5,1,6,10 X1726 X7382 |
Gauss Code: | {-4, 5, -1, 2, -3, 4, -5, 1, -2, 3} |
Braid Representative: |
|
Alexander Polynomial: | t-2 - t-1 + 1 - t + t2 |
Conway Polynomial: | 1 + 3z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {51, 10132, ...} |
Determinant and Signature: | {5, 4} |
Jones Polynomial: | q2 + q4 - q5 + q6 - q7 |
Other knots (up to mirrors) with the same Jones Polynomial: | {51, 10132, ...} |
Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): | q4 + q7 - q9 + q10 - q12 + q13 - 2q15 + q16 - q18 + q19 |
A2 (sl(3)) Invariant: | q6 + q8 + 2q10 + q12 + q14 - q18 - q20 - q22 |
Kauffman Polynomial: | a-9z + a-8z2 - a-7z + a-7z3 + 2a-6 - 3a-6z2 + a-6z4 - 2a-5z + a-5z3 + 3a-4 - 4a-4z2 + a-4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 5} |
Khovanov Homology.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=4 is the signature of
T(5,2). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | χ | |||||||||
15 | 1 | -1 | ||||||||||||||
13 | 0 | |||||||||||||||
11 | 1 | 1 | 0 | |||||||||||||
9 | 0 | |||||||||||||||
7 | 1 | 1 | ||||||||||||||
5 | 1 | 1 | ||||||||||||||
3 | 1 | 1 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | TubePlot[TorusKnot[5, 2]] |
![]() | |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[5, 2]] |
Out[3]= | 5 |
In[4]:= | PD[TorusKnot[5, 2]] |
Out[4]= | PD[X[3, 9, 4, 8], X[9, 5, 10, 4], X[5, 1, 6, 10], X[1, 7, 2, 6], X[7, 3, 8, 2]] |
In[5]:= | GaussCode[TorusKnot[5, 2]] |
Out[5]= | GaussCode[-4, 5, -1, 2, -3, 4, -5, 1, -2, 3] |
In[6]:= | BR[TorusKnot[5, 2]] |
Out[6]= | BR[2, {1, 1, 1, 1, 1}] |
In[7]:= | alex = Alexander[TorusKnot[5, 2]][t] |
Out[7]= | -2 1 2 1 + t - - - t + t t |
In[8]:= | Conway[TorusKnot[5, 2]][z] |
Out[8]= | 2 4 1 + 3 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {Knot[5, 1], Knot[10, 132]} |
In[10]:= | {KnotDet[TorusKnot[5, 2]], KnotSignature[TorusKnot[5, 2]]} |
Out[10]= | {5, 4} |
In[11]:= | J=Jones[TorusKnot[5, 2]][q] |
Out[11]= | 2 4 5 6 7 q + q - q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {Knot[5, 1], Knot[10, 132]} |
In[13]:= | ColouredJones[TorusKnot[5, 2], 2][q] |
Out[13]= | 4 7 9 10 12 13 15 16 18 19 q + q - q + q - q + q - 2 q + q - q + q |
In[14]:= | A2Invariant[TorusKnot[5, 2]][q] |
Out[14]= | 6 8 10 12 14 18 20 22 q + q + 2 q + q + q - q - q - q |
In[15]:= | Kauffman[TorusKnot[5, 2]][a, z] |
Out[15]= | 2 2 2 3 3 4 4 2 3 z z 2 z z 3 z 4 z z z z z -- + -- + -- - -- - --- + -- - ---- - ---- + -- + -- + -- + -- 6 4 9 7 5 8 6 4 7 5 6 4 a a a a a a a a a a a a |
In[16]:= | {Vassiliev[2][TorusKnot[5, 2]], Vassiliev[3][TorusKnot[5, 2]]} |
Out[16]= | {3, 5} |
In[17]:= | Kh[TorusKnot[5, 2]][q, t] |
Out[17]= | 3 5 7 2 11 3 11 4 15 5 q + q + q t + q t + q t + q t |
Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(5,2) |
|