© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(3,2)
T(3,2)
T(7,2)
T(7,2)
T(5,2)
TubePlot
This page is passe. Go here instead!

   The 5-Crossing Torus Knot T(5,2)

Also known as "The Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. 1), as "The Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", and as 51.

Visit T(5,2)'s page at Knotilus!

Acknowledgement

Further views:   The VISA Interlink Logo
The VISA Interlink Logo
Shirt in Lisboa
A shirt seen in Lisboa
A Pentagonal Table
A pentagonal table by Bob Mackay

PD Presentation: X3948 X9,5,10,4 X5,1,6,10 X1726 X7382

Gauss Code: {-4, 5, -1, 2, -3, 4, -5, 1, -2, 3}

Braid Representative:    

Alexander Polynomial: t-2 - t-1 + 1 - t + t2

Conway Polynomial: 1 + 3z2 + z4

Other knots with the same Alexander/Conway Polynomial: {51, 10132, ...}

Determinant and Signature: {5, 4}

Jones Polynomial: q2 + q4 - q5 + q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {51, 10132, ...}

Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): q4 + q7 - q9 + q10 - q12 + q13 - 2q15 + q16 - q18 + q19

A2 (sl(3)) Invariant: q6 + q8 + 2q10 + q12 + q14 - q18 - q20 - q22

Kauffman Polynomial: a-9z + a-8z2 - a-7z + a-7z3 + 2a-6 - 3a-6z2 + a-6z4 - 2a-5z + a-5z3 + 3a-4 - 4a-4z2 + a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 5}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of T(5,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345χ
15     1-1
13      0
11   11 0
9      0
7  1   1
51     1
31     1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[5, 2]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[5, 2]]
Out[3]=   
5
In[4]:=
PD[TorusKnot[5, 2]]
Out[4]=   
PD[X[3, 9, 4, 8], X[9, 5, 10, 4], X[5, 1, 6, 10], X[1, 7, 2, 6], X[7, 3, 8, 2]]
In[5]:=
GaussCode[TorusKnot[5, 2]]
Out[5]=   
GaussCode[-4, 5, -1, 2, -3, 4, -5, 1, -2, 3]
In[6]:=
BR[TorusKnot[5, 2]]
Out[6]=   
BR[2, {1, 1, 1, 1, 1}]
In[7]:=
alex = Alexander[TorusKnot[5, 2]][t]
Out[7]=   
     -2   1        2
1 + t   - - - t + t
          t
In[8]:=
Conway[TorusKnot[5, 2]][z]
Out[8]=   
       2    4
1 + 3 z  + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{Knot[5, 1], Knot[10, 132]}
In[10]:=
{KnotDet[TorusKnot[5, 2]], KnotSignature[TorusKnot[5, 2]]}
Out[10]=   
{5, 4}
In[11]:=
J=Jones[TorusKnot[5, 2]][q]
Out[11]=   
 2    4    5    6    7
q  + q  - q  + q  - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{Knot[5, 1], Knot[10, 132]}
In[13]:=
ColouredJones[TorusKnot[5, 2], 2][q]
Out[13]=   
 4    7    9    10    12    13      15    16    18    19
q  + q  - q  + q   - q   + q   - 2 q   + q   - q   + q
In[14]:=
A2Invariant[TorusKnot[5, 2]][q]
Out[14]=   
 6    8      10    12    14    18    20    22
q  + q  + 2 q   + q   + q   - q   - q   - q
In[15]:=
Kauffman[TorusKnot[5, 2]][a, z]
Out[15]=   
                           2      2      2    3    3    4    4
2    3    z    z    2 z   z    3 z    4 z    z    z    z    z
-- + -- + -- - -- - --- + -- - ---- - ---- + -- + -- + -- + --
 6    4    9    7    5     8     6      4     7    5    6    4
a    a    a    a    a     a     a      a     a    a    a    a
In[16]:=
{Vassiliev[2][TorusKnot[5, 2]], Vassiliev[3][TorusKnot[5, 2]]}
Out[16]=   
{3, 5}
In[17]:=
Kh[TorusKnot[5, 2]][q, t]
Out[17]=   
 3    5    7  2    11  3    11  4    15  5
q  + q  + q  t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(5,2)
T(3,2)
T(3,2)
T(7,2)
T(7,2)