© | Dror Bar-Natan: The Knot Atlas: Torus Knots: |
|
![]() TubePlot |
This page is passe. Go here
instead!
The 3-Crossing Torus Knot T(3,2)Visit T(3,2)'s page at Knotilus! |
PD Presentation: | X3146 X1524 X5362 |
Gauss Code: | {-2, 3, -1, 2, -3, 1} |
Braid Representative: |
|
Alexander Polynomial: | t-1 - 1 + t |
Conway Polynomial: | 1 + z2 |
Other knots with the same Alexander/Conway Polynomial: | {31, ...} |
Determinant and Signature: | {3, 2} |
Jones Polynomial: | q + q3 - q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {31, ...} |
Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): | q2 + q5 - q7 + q8 - q9 - q10 + q11 |
A2 (sl(3)) Invariant: | q2 + q4 + 2q6 + q8 - q12 - q14 |
Kauffman Polynomial: | a-5z - a-4 + a-4z2 + a-3z - 2a-2 + a-2z2 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 1} |
Khovanov Homology.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=2 is the signature of
T(3,2). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | χ | |||||||||
9 | 1 | -1 | ||||||||||||
7 | 0 | |||||||||||||
5 | 1 | 1 | ||||||||||||
3 | 1 | 1 | ||||||||||||
1 | 1 | 1 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | TubePlot[TorusKnot[3, 2]] |
![]() | |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[3, 2]] |
Out[3]= | 3 |
In[4]:= | PD[TorusKnot[3, 2]] |
Out[4]= | PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]] |
In[5]:= | GaussCode[TorusKnot[3, 2]] |
Out[5]= | GaussCode[-2, 3, -1, 2, -3, 1] |
In[6]:= | BR[TorusKnot[3, 2]] |
Out[6]= | BR[2, {1, 1, 1}] |
In[7]:= | alex = Alexander[TorusKnot[3, 2]][t] |
Out[7]= | 1 -1 + - + t t |
In[8]:= | Conway[TorusKnot[3, 2]][z] |
Out[8]= | 2 1 + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {Knot[3, 1]} |
In[10]:= | {KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]} |
Out[10]= | {3, 2} |
In[11]:= | J=Jones[TorusKnot[3, 2]][q] |
Out[11]= | 3 4 q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {Knot[3, 1]} |
In[13]:= | ColouredJones[TorusKnot[3, 2], 2][q] |
Out[13]= | 2 5 7 8 9 10 11 q + q - q + q - q - q + q |
In[14]:= | A2Invariant[TorusKnot[3, 2]][q] |
Out[14]= | 2 4 6 8 12 14 q + q + 2 q + q - q - q |
In[15]:= | Kauffman[TorusKnot[3, 2]][a, z] |
Out[15]= | 2 2 -4 2 z z z z -a - -- + -- + -- + -- + -- 2 5 3 4 2 a a a a a |
In[16]:= | {Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]} |
Out[16]= | {1, 1} |
In[17]:= | Kh[TorusKnot[3, 2]][q, t] |
Out[17]= | 3 5 2 9 3 q + q + q t + q t |
Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(3,2) |
|