PD Presentation: |
X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[10, 3]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[10, 3]] |
Out[3]= | 20 |
In[4]:= | PD[TorusKnot[10, 3]] |
Out[4]= | PD[X[34, 8, 35, 7], X[21, 9, 22, 8], X[22, 36, 23, 35], X[9, 37, 10, 36],
> X[10, 24, 11, 23], X[37, 25, 38, 24], X[38, 12, 39, 11], X[25, 13, 26, 12],
> X[26, 40, 27, 39], X[13, 1, 14, 40], X[14, 28, 15, 27], X[1, 29, 2, 28],
> X[2, 16, 3, 15], X[29, 17, 30, 16], X[30, 4, 31, 3], X[17, 5, 18, 4],
> X[18, 32, 19, 31], X[5, 33, 6, 32], X[6, 20, 7, 19], X[33, 21, 34, 20]] |
In[5]:= | GaussCode[TorusKnot[10, 3]] |
Out[5]= | GaussCode[-12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14,
> -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1,
> 3, 4, -6, -7, 9, 10] |
In[6]:= | BR[TorusKnot[10, 3]] |
Out[6]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[7]:= | alex = Alexander[TorusKnot[10, 3]][t] |
Out[7]= | -9 -8 -6 -5 -3 -2 2 3 5 6 8 9
1 + t - t + t - t + t - t - t + t - t + t - t + t |
In[8]:= | Conway[TorusKnot[10, 3]][z] |
Out[8]= | 2 4 6 8 10 12 14 16
1 + 33 z + 264 z + 792 z + 1166 z + 946 z + 443 z + 119 z + 17 z +
18
> z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[10, 3]], KnotSignature[TorusKnot[10, 3]]} |
Out[10]= | {3, 14} |
In[11]:= | J=Jones[TorusKnot[10, 3]][q] |
Out[11]= | 9 11 20
q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | A2Invariant[TorusKnot[10, 3]][q] |
Out[13]= | NotAvailable |
In[14]:= | Kauffman[TorusKnot[10, 3]][a, z] |
Out[14]= | NotAvailable |
In[15]:= | {Vassiliev[2][TorusKnot[10, 3]], Vassiliev[3][TorusKnot[10, 3]]} |
Out[15]= | {33, 165} |
In[16]:= | Kh[TorusKnot[10, 3]][q, t] |
Out[16]= | 17 19 21 2 25 3 23 4 25 4 27 5 29 5 27 6
q + q + q t + q t + q t + q t + q t + q t + q t +
31 7 29 8 31 8 33 9 35 9 33 10 37 11 35 12
> q t + q t + q t + q t + q t + q t + q t + q t +
37 12 39 13 41 13
> q t + q t + q t |