© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(19,2)
T(19,2)
T(7,4)
T(7,4)
T(10,3)
TubePlot
This page is passe. Go here instead!

   The 20-Crossing Torus Knot T(10,3)

Visit T(10,3)'s page at Knotilus!

Acknowledgement

PD Presentation: X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20

Gauss Code: {-12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1, 3, 4, -6, -7, 9, 10}

Braid Representative:    

Alexander Polynomial: t-9 - t-8 + t-6 - t-5 + t-3 - t-2 + 1 - t2 + t3 - t5 + t6 - t8 + t9

Conway Polynomial: 1 + 33z2 + 264z4 + 792z6 + 1166z8 + 946z10 + 443z12 + 119z14 + 17z16 + z18

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {3, 14}

Jones Polynomial: q9 + q11 - q20

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: Not Available.

Kauffman Polynomial: Not Available.

V2 and V3, the type 2 and 3 Vassiliev invariants: {33, 165}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=14 is the signature of T(10,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213χ
41             1-1
39             1-1
37           11 0
35         1  1 0
33         11   0
31       11     0
29     1  1     0
27     11       0
25   11         0
23    1         1
21  1           1
191             1
171             1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[10, 3]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[10, 3]]
Out[3]=   
20
In[4]:=
PD[TorusKnot[10, 3]]
Out[4]=   
PD[X[34, 8, 35, 7], X[21, 9, 22, 8], X[22, 36, 23, 35], X[9, 37, 10, 36], 
 
>   X[10, 24, 11, 23], X[37, 25, 38, 24], X[38, 12, 39, 11], X[25, 13, 26, 12], 
 
>   X[26, 40, 27, 39], X[13, 1, 14, 40], X[14, 28, 15, 27], X[1, 29, 2, 28], 
 
>   X[2, 16, 3, 15], X[29, 17, 30, 16], X[30, 4, 31, 3], X[17, 5, 18, 4], 
 
>   X[18, 32, 19, 31], X[5, 33, 6, 32], X[6, 20, 7, 19], X[33, 21, 34, 20]]
In[5]:=
GaussCode[TorusKnot[10, 3]]
Out[5]=   
GaussCode[-12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, 
 
>   -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1, 
 
>   3, 4, -6, -7, 9, 10]
In[6]:=
BR[TorusKnot[10, 3]]
Out[6]=   
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[7]:=
alex = Alexander[TorusKnot[10, 3]][t]
Out[7]=   
     -9    -8    -6    -5    -3    -2    2    3    5    6    8    9
1 + t   - t   + t   - t   + t   - t   - t  + t  - t  + t  - t  + t
In[8]:=
Conway[TorusKnot[10, 3]][z]
Out[8]=   
        2        4        6         8        10        12        14       16
1 + 33 z  + 264 z  + 792 z  + 1166 z  + 946 z   + 443 z   + 119 z   + 17 z   + 
 
     18
>   z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{}
In[10]:=
{KnotDet[TorusKnot[10, 3]], KnotSignature[TorusKnot[10, 3]]}
Out[10]=   
{3, 14}
In[11]:=
J=Jones[TorusKnot[10, 3]][q]
Out[11]=   
 9    11    20
q  + q   - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{}
In[13]:=
A2Invariant[TorusKnot[10, 3]][q]
Out[13]=   
NotAvailable
In[14]:=
Kauffman[TorusKnot[10, 3]][a, z]
Out[14]=   
NotAvailable
In[15]:=
{Vassiliev[2][TorusKnot[10, 3]], Vassiliev[3][TorusKnot[10, 3]]}
Out[15]=   
{33, 165}
In[16]:=
Kh[TorusKnot[10, 3]][q, t]
Out[16]=   
 17    19    21  2    25  3    23  4    25  4    27  5    29  5    27  6
q   + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     31  7    29  8    31  8    33  9    35  9    33  10    37  11    35  12
>   q   t  + q   t  + q   t  + q   t  + q   t  + q   t   + q   t   + q   t   + 
 
     37  12    39  13    41  13
>   q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(10,3)
T(19,2)
T(19,2)
T(7,4)
T(7,4)