© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(10,3)
T(10,3)
T(21,2)
T(21,2)
T(7,4)
TubePlot
This page is passe. Go here instead!

   The 21-Crossing Torus Knot T(7,4)

Visit T(7,4)'s page at Knotilus!

Acknowledgement

PD Presentation: X9,41,10,40 X20,42,21,41 X31,1,32,42 X21,11,22,10 X32,12,33,11 X1,13,2,12 X33,23,34,22 X2,24,3,23 X13,25,14,24 X3,35,4,34 X14,36,15,35 X25,37,26,36 X15,5,16,4 X26,6,27,5 X37,7,38,6 X27,17,28,16 X38,18,39,17 X7,19,8,18 X39,29,40,28 X8,30,9,29 X19,31,20,30

Gauss Code: {-6, -8, -10, 13, 14, 15, -18, -20, -1, 4, 5, 6, -9, -11, -13, 16, 17, 18, -21, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -3, -5, -7, 10, 11, 12, -15, -17, -19, 1, 2, 3}

Braid Representative:    

Alexander Polynomial: t-9 - t-8 + t-5 - t-4 + t-2 - 1 + t2 - t4 + t5 - t8 + t9

Conway Polynomial: 1 + 30z2 + 235z4 + 741z6 + 1131z8 + 936z10 + 442z12 + 119z14 + 17z16 + z18

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {7, 14}

Jones Polynomial: q9 + q11 + q13 - q14 + q15 - q16 - q18

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: Not Available.

Kauffman Polynomial: Not Available.

V2 and V3, the type 2 and 3 Vassiliev invariants: {30, 140}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=14 is the signature of T(7,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213χ
39            110
37           1  -1
35           21 -1
33         21   -1
31       1  1   0
29     1 12     0
27     11       0
25   11 1       1
23    1         1
21  1           1
191             1
171             1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[7, 4]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[7, 4]]
Out[3]=   
21
In[4]:=
PD[TorusKnot[7, 4]]
Out[4]=   
PD[X[9, 41, 10, 40], X[20, 42, 21, 41], X[31, 1, 32, 42], X[21, 11, 22, 10], 
 
>   X[32, 12, 33, 11], X[1, 13, 2, 12], X[33, 23, 34, 22], X[2, 24, 3, 23], 
 
>   X[13, 25, 14, 24], X[3, 35, 4, 34], X[14, 36, 15, 35], X[25, 37, 26, 36], 
 
>   X[15, 5, 16, 4], X[26, 6, 27, 5], X[37, 7, 38, 6], X[27, 17, 28, 16], 
 
>   X[38, 18, 39, 17], X[7, 19, 8, 18], X[39, 29, 40, 28], X[8, 30, 9, 29], 
 
>   X[19, 31, 20, 30]]
In[5]:=
GaussCode[TorusKnot[7, 4]]
Out[5]=   
GaussCode[-6, -8, -10, 13, 14, 15, -18, -20, -1, 4, 5, 6, -9, -11, -13, 16, 17, 
 
>   18, -21, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -3, -5, -7, 10, 11, 
 
>   12, -15, -17, -19, 1, 2, 3]
In[6]:=
BR[TorusKnot[7, 4]]
Out[6]=   
BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]
In[7]:=
alex = Alexander[TorusKnot[7, 4]][t]
Out[7]=   
      -9    -8    -5    -4    -2    2    4    5    8    9
-1 + t   - t   + t   - t   + t   + t  - t  + t  - t  + t
In[8]:=
Conway[TorusKnot[7, 4]][z]
Out[8]=   
        2        4        6         8        10        12        14       16
1 + 30 z  + 235 z  + 741 z  + 1131 z  + 936 z   + 442 z   + 119 z   + 17 z   + 
 
     18
>   z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{}
In[10]:=
{KnotDet[TorusKnot[7, 4]], KnotSignature[TorusKnot[7, 4]]}
Out[10]=   
{7, 14}
In[11]:=
J=Jones[TorusKnot[7, 4]][q]
Out[11]=   
 9    11    13    14    15    16    18
q  + q   + q   - q   + q   - q   - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{}
In[13]:=
A2Invariant[TorusKnot[7, 4]][q]
Out[13]=   
NotAvailable
In[14]:=
Kauffman[TorusKnot[7, 4]][a, z]
Out[14]=   
NotAvailable
In[15]:=
{Vassiliev[2][TorusKnot[7, 4]], Vassiliev[3][TorusKnot[7, 4]]}
Out[15]=   
{30, 140}
In[16]:=
Kh[TorusKnot[7, 4]][q, t]
Out[16]=   
 17    19    21  2    25  3    23  4    25  4    27  5    29  5    25  6
q   + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     27  6    29  7    31  7      29  8      33  9    31  10    33  10
>   q   t  + q   t  + q   t  + 2 q   t  + 2 q   t  + q   t   + q   t   + 
 
       35  11    37  11    35  12    39  12    39  13
>   2 q   t   + q   t   + q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(7,4)
T(10,3)
T(10,3)
T(21,2)
T(21,2)