PD Presentation: |
X9,41,10,40 X20,42,21,41 X31,1,32,42 X21,11,22,10 X32,12,33,11 X1,13,2,12 X33,23,34,22 X2,24,3,23 X13,25,14,24 X3,35,4,34 X14,36,15,35 X25,37,26,36 X15,5,16,4 X26,6,27,5 X37,7,38,6 X27,17,28,16 X38,18,39,17 X7,19,8,18 X39,29,40,28 X8,30,9,29 X19,31,20,30 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[7, 4]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[7, 4]] |
Out[3]= | 21 |
In[4]:= | PD[TorusKnot[7, 4]] |
Out[4]= | PD[X[9, 41, 10, 40], X[20, 42, 21, 41], X[31, 1, 32, 42], X[21, 11, 22, 10],
> X[32, 12, 33, 11], X[1, 13, 2, 12], X[33, 23, 34, 22], X[2, 24, 3, 23],
> X[13, 25, 14, 24], X[3, 35, 4, 34], X[14, 36, 15, 35], X[25, 37, 26, 36],
> X[15, 5, 16, 4], X[26, 6, 27, 5], X[37, 7, 38, 6], X[27, 17, 28, 16],
> X[38, 18, 39, 17], X[7, 19, 8, 18], X[39, 29, 40, 28], X[8, 30, 9, 29],
> X[19, 31, 20, 30]] |
In[5]:= | GaussCode[TorusKnot[7, 4]] |
Out[5]= | GaussCode[-6, -8, -10, 13, 14, 15, -18, -20, -1, 4, 5, 6, -9, -11, -13, 16, 17,
> 18, -21, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -3, -5, -7, 10, 11,
> 12, -15, -17, -19, 1, 2, 3] |
In[6]:= | BR[TorusKnot[7, 4]] |
Out[6]= | BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}] |
In[7]:= | alex = Alexander[TorusKnot[7, 4]][t] |
Out[7]= | -9 -8 -5 -4 -2 2 4 5 8 9
-1 + t - t + t - t + t + t - t + t - t + t |
In[8]:= | Conway[TorusKnot[7, 4]][z] |
Out[8]= | 2 4 6 8 10 12 14 16
1 + 30 z + 235 z + 741 z + 1131 z + 936 z + 442 z + 119 z + 17 z +
18
> z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[7, 4]], KnotSignature[TorusKnot[7, 4]]} |
Out[10]= | {7, 14} |
In[11]:= | J=Jones[TorusKnot[7, 4]][q] |
Out[11]= | 9 11 13 14 15 16 18
q + q + q - q + q - q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | A2Invariant[TorusKnot[7, 4]][q] |
Out[13]= | NotAvailable |
In[14]:= | Kauffman[TorusKnot[7, 4]][a, z] |
Out[14]= | NotAvailable |
In[15]:= | {Vassiliev[2][TorusKnot[7, 4]], Vassiliev[3][TorusKnot[7, 4]]} |
Out[15]= | {30, 140} |
In[16]:= | Kh[TorusKnot[7, 4]][q, t] |
Out[16]= | 17 19 21 2 25 3 23 4 25 4 27 5 29 5 25 6
q + q + q t + q t + q t + q t + q t + q t + q t +
27 6 29 7 31 7 29 8 33 9 31 10 33 10
> q t + q t + q t + 2 q t + 2 q t + q t + q t +
35 11 37 11 35 12 39 12 39 13
> 2 q t + q t + q t + q t + q t |