PD Presentation: |
X13,33,14,32 X33,15,34,14 X15,35,16,34 X35,17,36,16 X17,37,18,36 X37,19,38,18 X19,1,20,38 X1,21,2,20 X21,3,22,2 X3,23,4,22 X23,5,24,4 X5,25,6,24 X25,7,26,6 X7,27,8,26 X27,9,28,8 X9,29,10,28 X29,11,30,10 X11,31,12,30 X31,13,32,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[19, 2]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[19, 2]] |
Out[3]= | 19 |
In[4]:= | PD[TorusKnot[19, 2]] |
Out[4]= | PD[X[13, 33, 14, 32], X[33, 15, 34, 14], X[15, 35, 16, 34], X[35, 17, 36, 16],
> X[17, 37, 18, 36], X[37, 19, 38, 18], X[19, 1, 20, 38], X[1, 21, 2, 20],
> X[21, 3, 22, 2], X[3, 23, 4, 22], X[23, 5, 24, 4], X[5, 25, 6, 24],
> X[25, 7, 26, 6], X[7, 27, 8, 26], X[27, 9, 28, 8], X[9, 29, 10, 28],
> X[29, 11, 30, 10], X[11, 31, 12, 30], X[31, 13, 32, 12]] |
In[5]:= | GaussCode[TorusKnot[19, 2]] |
Out[5]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -1, 2, -3, 4, -5,
> 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 1, -2, 3, -4, 5,
> -6, 7] |
In[6]:= | BR[TorusKnot[19, 2]] |
Out[6]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[7]:= | alex = Alexander[TorusKnot[19, 2]][t] |
Out[7]= | -9 -8 -7 -6 -5 -4 -3 -2 1 2 3 4
-1 + t - t + t - t + t - t + t - t + - + t - t + t - t +
t
5 6 7 8 9
> t - t + t - t + t |
In[8]:= | Conway[TorusKnot[19, 2]][z] |
Out[8]= | 2 4 6 8 10 12 14 16
1 + 45 z + 330 z + 924 z + 1287 z + 1001 z + 455 z + 120 z + 17 z +
18
> z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[19, 2]], KnotSignature[TorusKnot[19, 2]]} |
Out[10]= | {19, 18} |
In[11]:= | J=Jones[TorusKnot[19, 2]][q] |
Out[11]= | 9 11 12 13 14 15 16 17 18 19 20 21 22
q + q - q + q - q + q - q + q - q + q - q + q - q +
23 24 25 26 27 28
> q - q + q - q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | A2Invariant[TorusKnot[19, 2]][q] |
Out[13]= | NotAvailable |
In[14]:= | Kauffman[TorusKnot[19, 2]][a, z] |
Out[14]= | NotAvailable |
In[15]:= | {Vassiliev[2][TorusKnot[19, 2]], Vassiliev[3][TorusKnot[19, 2]]} |
Out[15]= | {45, 285} |
In[16]:= | Kh[TorusKnot[19, 2]][q, t] |
Out[16]= | 17 19 21 2 25 3 25 4 29 5 29 6 33 7 33 8
q + q + q t + q t + q t + q t + q t + q t + q t +
37 9 37 10 41 11 41 12 45 13 45 14 49 15
> q t + q t + q t + q t + q t + q t + q t +
49 16 53 17 53 18 57 19
> q t + q t + q t + q t |