© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n77
K11n77
K11n79
K11n79
K11n78
Knotscape
This page is passe. Go here instead!

   The Knot K11n78

Visit K11n78's page at Knotilus!

Acknowledgement

K11n78 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,15,6,14 X2837 X9,20,10,21 X11,17,12,16 X13,19,14,18 X15,7,16,6 X17,13,18,12 X19,22,20,1 X21,10,22,11

Gauss Code: {1, -4, 2, -1, -3, 8, 4, -2, -5, 11, -6, 9, -7, 3, -8, 6, -9, 7, -10, 5, -11, 10}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 -20 -16 -18 -6 -12 -22 -10

Alexander Polynomial: t-4 - 3t-3 + 6t-2 - 8t-1 + 9 - 8t + 6t2 - 3t3 + t4

Conway Polynomial: 1 + 5z2 + 8z4 + 5z6 + z8

Other knots with the same Alexander/Conway Polynomial: {1062, K11n76, ...}

Determinant and Signature: {45, 4}

Jones Polynomial: - q-1 + 2 - 4q + 7q2 - 6q3 + 8q4 - 7q5 + 5q6 - 4q7 + q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11n76, ...}

A2 (sl(3)) Invariant: - q-2 - 2q2 + q6 + 2q8 + 6q10 + 2q12 + 4q14 - 2q16 - 3q18 - 3q20 - 3q22 + q24 + q28

HOMFLY-PT Polynomial: 2a-8 + a-8z2 - 10a-6 - 13a-6z2 - 6a-6z4 - a-6z6 + 13a-4 + 25a-4z2 + 19a-4z4 + 7a-4z6 + a-4z8 - 4a-2 - 8a-2z2 - 5a-2z4 - a-2z6

Kauffman Polynomial: a-10z2 - 2a-9z + 4a-9z3 + 2a-8 + a-8z2 - 2a-8z4 + 2a-8z6 - 14a-7z + 26a-7z3 - 18a-7z5 + 5a-7z7 + 10a-6 - 17a-6z2 + 16a-6z4 - 13a-6z6 + 4a-6z8 - 21a-5z + 42a-5z3 - 31a-5z5 + 5a-5z7 + a-5z9 + 13a-4 - 26a-4z2 + 31a-4z4 - 24a-4z6 + 6a-4z8 - 13a-3z + 28a-3z3 - 18a-3z5 + a-3z7 + a-3z9 + 4a-2 - 9a-2z2 + 13a-2z4 - 9a-2z6 + 2a-2z8 - 4a-1z + 8a-1z3 - 5a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, 7}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1178. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 17         1
j = 15        3 
j = 13       21 
j = 11      53  
j = 9     32   
j = 7    35    
j = 5   43     
j = 3  14      
j = 1 13       
j = -1 1        
j = -31         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 78]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 78]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 15, 6, 14], X[2, 8, 3, 7], 
 
>   X[9, 20, 10, 21], X[11, 17, 12, 16], X[13, 19, 14, 18], X[15, 7, 16, 6], 
 
>   X[17, 13, 18, 12], X[19, 22, 20, 1], X[21, 10, 22, 11]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 78]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 8, 4, -2, -5, 11, -6, 9, -7, 3, -8, 6, -9, 7, -10, 
 
>   5, -11, 10]
In[5]:=
DTCode[Knot[11, NonAlternating, 78]]
Out[5]=   
DTCode[4, 8, -14, 2, -20, -16, -18, -6, -12, -22, -10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 78]][t]
Out[6]=   
     -4   3    6    8            2      3    4
9 + t   - -- + -- - - - 8 t + 6 t  - 3 t  + t
           3    2   t
          t    t
In[7]:=
Conway[Knot[11, NonAlternating, 78]][z]
Out[7]=   
       2      4      6    8
1 + 5 z  + 8 z  + 5 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 62], Knot[11, NonAlternating, 76], Knot[11, NonAlternating, 78]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 78]], KnotSignature[Knot[11, NonAlternating, 78]]}
Out[9]=   
{45, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 78]][q]
Out[10]=   
    1            2      3      4      5      6      7    8
2 - - - 4 q + 7 q  - 6 q  + 8 q  - 7 q  + 5 q  - 4 q  + q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 76], Knot[11, NonAlternating, 78]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 78]][q]
Out[12]=   
  -2      2    6      8      10      12      14      16      18      20
-q   - 2 q  + q  + 2 q  + 6 q   + 2 q   + 4 q   - 2 q   - 3 q   - 3 q   - 
 
       22    24    28
>   3 q   + q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 78]][a, z]
Out[13]=   
                     2       2       2      2      4       4      4    6
2    10   13   4    z    13 z    25 z    8 z    6 z    19 z    5 z    z
-- - -- + -- - -- + -- - ----- + ----- - ---- - ---- + ----- - ---- - -- + 
 8    6    4    2    8     6       4       2      6      4       2     6
a    a    a    a    a     a       a       a      a      a       a     a
 
       6    6    8
    7 z    z    z
>   ---- - -- + --
      4     2    4
     a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 78]][a, z]
Out[14]=   
                                                      2     2       2       2
2    10   13   4    2 z   14 z   21 z   13 z   4 z   z     z    17 z    26 z
-- + -- + -- + -- - --- - ---- - ---- - ---- - --- + --- + -- - ----- - ----- - 
 8    6    4    2    9      7      5      3     a     10    8     6       4
a    a    a    a    a      a      a      a           a     a     a       a
 
       2      3       3       3       3      3      4       4       4       4
    9 z    4 z    26 z    42 z    28 z    8 z    2 z    16 z    31 z    13 z
>   ---- + ---- + ----- + ----- + ----- + ---- - ---- + ----- + ----- + ----- - 
      2      9      7       5       3      a       8      6       4       2
     a      a      a       a       a              a      a       a       a
 
        5       5       5      5      6       6       6      6      7      7
    18 z    31 z    18 z    5 z    2 z    13 z    24 z    9 z    5 z    5 z
>   ----- - ----- - ----- - ---- + ---- - ----- - ----- - ---- + ---- + ---- + 
      7       5       3      a       8      6       4       2      7      5
     a       a       a              a      a       a       a      a      a
 
     7    7      8      8      8    9    9
    z    z    4 z    6 z    2 z    z    z
>   -- + -- + ---- + ---- + ---- + -- + --
     3   a      6      4      2     5    3
    a          a      a      a     a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 78]], Vassiliev[3][Knot[11, NonAlternating, 78]]}
Out[15]=   
{5, 7}
In[16]:=
Kh[Knot[11, NonAlternating, 78]][q, t]
Out[16]=   
                                         3
   3      5     1      1     q    3 q   q       5        7        7  2
4 q  + 4 q  + ----- + ---- + -- + --- + -- + 3 q  t + 3 q  t + 5 q  t  + 
               3  3      2    2    t    t
              q  t    q t    t
 
       9  2      9  3      11  3      11  4      13  4    13  5      15  5
>   3 q  t  + 2 q  t  + 5 q   t  + 3 q   t  + 2 q   t  + q   t  + 3 q   t  + 
 
     17  6
>   q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n78
K11n77
K11n77
K11n79
K11n79