© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n78
K11n78
K11n80
K11n80
K11n79
Knotscape
This page is passe. Go here instead!

   The Knot K11n79

Visit K11n79's page at Knotilus!

Acknowledgement

K11n79 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,14,6,15 X2837 X9,21,10,20 X11,19,12,18 X13,6,14,7 X15,22,16,1 X17,13,18,12 X19,11,20,10 X21,16,22,17

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, -5, 10, -6, 9, -7, 3, -8, 11, -9, 6, -10, 5, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 -20 -18 -6 -22 -12 -10 -16

Alexander Polynomial: - 2t-2 + 4t-1 - 3 + 4t - 2t2

Conway Polynomial: 1 - 4z2 - 2z4

Other knots with the same Alexander/Conway Polynomial: {K11n138, ...}

Determinant and Signature: {15, 2}

Jones Polynomial: q-3 - q-2 + 2q-1 - 2 + 2q - 3q2 + 2q3 - q4 + q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11n138, ...}

A2 (sl(3)) Invariant: q-10 + q-8 + q-6 + q-4 - q2 - 2q4 - q6 - q8 + q10 + q12 + q14 + q16

HOMFLY-PT Polynomial: 2a-4 + a-4z2 - 2a-2 - 3a-2z2 - a-2z4 - 1 - 3z2 - z4 + 2a2 + a2z2

Kauffman Polynomial: a-5z + 2a-4 - 12a-4z2 + 16a-4z4 - 7a-4z6 + a-4z8 + 7a-3z - 17a-3z3 + 17a-3z5 - 7a-3z7 + a-3z9 + 2a-2 - 16a-2z2 + 23a-2z4 - 12a-2z6 + 2a-2z8 + 7a-1z - 15a-1z3 + 13a-1z5 - 6a-1z7 + a-1z9 - 1 + 2z2 + 2z4 - 4z6 + z8 + az + 2az3 - 4az5 + az7 - 2a2 + 6a2z2 - 5a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-4, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1179. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 11        1
j = 9         
j = 7      21 
j = 5     1   
j = 3    12   
j = 1   22    
j = -1   11    
j = -3 12      
j = -5         
j = -71        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 79]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 79]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[2, 8, 3, 7], 
 
>   X[9, 21, 10, 20], X[11, 19, 12, 18], X[13, 6, 14, 7], X[15, 22, 16, 1], 
 
>   X[17, 13, 18, 12], X[19, 11, 20, 10], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 79]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, -5, 10, -6, 9, -7, 3, -8, 11, -9, 6, -10, 
 
>   5, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 79]]
Out[5]=   
DTCode[4, 8, -14, 2, -20, -18, -6, -22, -12, -10, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 79]][t]
Out[6]=   
     2    4            2
-3 - -- + - + 4 t - 2 t
      2   t
     t
In[7]:=
Conway[Knot[11, NonAlternating, 79]][z]
Out[7]=   
       2      4
1 - 4 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 79], Knot[11, NonAlternating, 138]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 79]], KnotSignature[Knot[11, NonAlternating, 79]]}
Out[9]=   
{15, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 79]][q]
Out[10]=   
      -3    -2   2            2      3    4    5
-2 + q   - q   + - + 2 q - 3 q  + 2 q  - q  + q
                 q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 79], Knot[11, NonAlternating, 138]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 79]][q]
Out[12]=   
 -10    -8    -6    -4    2      4    6    8    10    12    14    16
q    + q   + q   + q   - q  - 2 q  - q  - q  + q   + q   + q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 79]][a, z]
Out[13]=   
                              2      2                 4
     2    2       2      2   z    3 z     2  2    4   z
-1 + -- - -- + 2 a  - 3 z  + -- - ---- + a  z  - z  - --
      4    2                  4     2                  2
     a    a                  a     a                  a
In[14]:=
Kauffman[Knot[11, NonAlternating, 79]][a, z]
Out[14]=   
                                                        2       2
     2    2       2   z    7 z   7 z            2   12 z    16 z       2  2
-1 + -- + -- - 2 a  + -- + --- + --- + a z + 2 z  - ----- - ----- + 6 a  z  - 
      4    2           5    3     a                   4       2
     a    a           a    a                         a       a
 
        3       3                       4       4                 5       5
    17 z    15 z         3      4   16 z    23 z       2  4   17 z    13 z
>   ----- - ----- + 2 a z  + 2 z  + ----- + ----- - 5 a  z  + ----- + ----- - 
      3       a                       4       2                 3       a
     a                               a       a                 a
 
                       6       6              7      7                8
         5      6   7 z    12 z     2  6   7 z    6 z       7    8   z
>   4 a z  - 4 z  - ---- - ----- + a  z  - ---- - ---- + a z  + z  + -- + 
                      4      2               3     a                  4
                     a      a               a                        a
 
       8    9    9
    2 z    z    z
>   ---- + -- + --
      2     3   a
     a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 79]], Vassiliev[3][Knot[11, NonAlternating, 79]]}
Out[15]=   
{-4, -2}
In[16]:=
Kh[Knot[11, NonAlternating, 79]][q, t]
Out[16]=   
1          3     1       1       2      1    2 q      3      5        7  2
- + 2 q + q  + ----- + ----- + ----- + --- + --- + 2 q  t + q  t + 2 q  t  + 
q               7  4    3  3    3  2   q t    t
               q  t    q  t    q  t
 
     7  3    11  4
>   q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n79
K11n78
K11n78
K11n80
K11n80