© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n76
K11n76
K11n78
K11n78
K11n77
Knotscape
This page is passe. Go here instead!

   The Knot K11n77

Visit K11n77's page at Knotilus!

Acknowledgement

K11n77 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,15,6,14 X2837 X20,10,21,9 X11,17,12,16 X13,19,14,18 X15,7,16,6 X17,13,18,12 X22,20,1,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, -3, 8, 4, -2, 5, -11, -6, 9, -7, 3, -8, 6, -9, 7, 10, -5, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 20 -16 -18 -6 -12 22 10

Alexander Polynomial: t-4 - t-3 - 2t-2 + 8t-1 - 11 + 8t - 2t2 - t3 + t4

Conway Polynomial: 1 + 7z2 + 12z4 + 7z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {27, 6}

Jones Polynomial: q4 + q6 + 2q7 - 4q8 + 4q9 - 6q10 + 5q11 - 4q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q14 + q16 + 2q18 + 4q20 + 2q22 + q24 - 5q28 - 3q30 - 4q32 + 2q36 + q38 + 3q40 - q42 - q44

HOMFLY-PT Polynomial: - a-14 + 6a-12 + 4a-12z2 - 13a-10 - 20a-10z2 - 9a-10z4 - a-10z6 + 9a-8 + 23a-8z2 + 21a-8z4 + 8a-8z6 + a-8z8

Kauffman Polynomial: - 2a-17z3 + a-17z5 + 3a-16z2 - 8a-16z4 + 3a-16z6 - 3a-15z + 5a-15z3 - 8a-15z5 + 3a-15z7 + a-14 + 5a-14z2 - 8a-14z4 + a-14z6 + a-14z8 - 12a-13z + 23a-13z3 - 15a-13z5 + 4a-13z7 + 6a-12 - 6a-12z2 + 8a-12z4 - 4a-12z6 + a-12z8 - 22a-11z + 36a-11z3 - 15a-11z5 + 2a-11z7 + 13a-10 - 31a-10z2 + 29a-10z4 - 10a-10z6 + a-10z8 - 13a-9z + 20a-9z3 - 9a-9z5 + a-9z7 + 9a-8 - 23a-8z2 + 21a-8z4 - 8a-8z6 + a-8z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, 16}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 1177. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         21 
j = 23        32  
j = 21       32   
j = 19     123    
j = 17     33     
j = 15   112      
j = 13    3       
j = 11  1         
j = 91           
j = 71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 77]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 77]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 15, 6, 14], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[11, 17, 12, 16], X[13, 19, 14, 18], X[15, 7, 16, 6], 
 
>   X[17, 13, 18, 12], X[22, 20, 1, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 77]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 8, 4, -2, 5, -11, -6, 9, -7, 3, -8, 6, -9, 7, 10, 
 
>   -5, 11, -10]
In[5]:=
DTCode[Knot[11, NonAlternating, 77]]
Out[5]=   
DTCode[4, 8, -14, 2, 20, -16, -18, -6, -12, 22, 10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 77]][t]
Out[6]=   
       -4    -3   2    8            2    3    4
-11 + t   - t   - -- + - + 8 t - 2 t  - t  + t
                   2   t
                  t
In[7]:=
Conway[Knot[11, NonAlternating, 77]][z]
Out[7]=   
       2       4      6    8
1 + 7 z  + 12 z  + 7 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 77]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 77]], KnotSignature[Knot[11, NonAlternating, 77]]}
Out[9]=   
{27, 6}
In[10]:=
J=Jones[Knot[11, NonAlternating, 77]][q]
Out[10]=   
 4    6      7      8      9      10      11      12      13    14
q  + q  + 2 q  - 4 q  + 4 q  - 6 q   + 5 q   - 4 q   + 3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 77]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 77]][q]
Out[12]=   
 14    16      18      20      22    24      28      30      32      36    38
q   + q   + 2 q   + 4 q   + 2 q   + q   - 5 q   - 3 q   - 4 q   + 2 q   + q   + 
 
       40    42    44
>   3 q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 77]][a, z]
Out[13]=   
                            2       2       2      4       4    6       6    8
  -14    6    13    9    4 z    20 z    23 z    9 z    21 z    z     8 z    z
-a    + --- - --- + -- + ---- - ----- + ----- - ---- + ----- - --- + ---- + --
         12    10    8    12      10      8      10      8      10     8     8
        a     a     a    a       a       a      a       a      a      a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 77]][a, z]
Out[14]=   
                                                      2      2      2       2
 -14    6    13    9    3 z   12 z   22 z   13 z   3 z    5 z    6 z    31 z
a    + --- + --- + -- - --- - ---- - ---- - ---- + ---- + ---- - ---- - ----- - 
        12    10    8    15    13     11      9     16     14     12      10
       a     a     a    a     a      a       a     a      a      a       a
 
        2      3      3       3       3       3      4      4      4       4
    23 z    2 z    5 z    23 z    36 z    20 z    8 z    8 z    8 z    29 z
>   ----- - ---- + ---- + ----- + ----- + ----- - ---- - ---- + ---- + ----- + 
      8      17     15      13      11      9      16     14     12      10
     a      a      a       a       a       a      a      a      a       a
 
        4    5       5       5       5      5      6    6       6       6
    21 z    z     8 z    15 z    15 z    9 z    3 z    z     4 z    10 z
>   ----- + --- - ---- - ----- - ----- - ---- + ---- + --- - ---- - ----- - 
      8      17    15      13      11      9     16     14    12      10
     a      a     a       a       a       a     a      a     a       a
 
       6      7      7      7    7    8     8     8     8
    8 z    3 z    4 z    2 z    z    z     z     z     z
>   ---- + ---- + ---- + ---- + -- + --- + --- + --- + --
      8     15     13     11     9    14    12    10    8
     a     a      a      a      a    a     a     a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 77]], Vassiliev[3][Knot[11, NonAlternating, 77]]}
Out[15]=   
{7, 16}
In[16]:=
Kh[Knot[11, NonAlternating, 77]][q, t]
Out[16]=   
 7    9    11  2    15  3      13  4    15  4      15  5      17  5    19  5
q  + q  + q   t  + q   t  + 3 q   t  + q   t  + 2 q   t  + 3 q   t  + q   t  + 
 
       17  6      19  6      19  7      21  7      21  8      23  8
>   3 q   t  + 2 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 3 q   t  + 
 
       23  9      25  9    25  10      27  10    29  11
>   2 q   t  + 2 q   t  + q   t   + 2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n77
K11n76
K11n76
K11n78
K11n78