© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n174
K11n174
K11n176
K11n176
K11n175
Knotscape
This page is passe. Go here instead!

   The Knot K11n175

Visit K11n175's page at Knotilus!

Acknowledgement

K11n175 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,11,4,10 X5,17,6,16 X14,8,15,7 X9,21,10,20 X11,18,12,19 X13,3,14,2 X22,16,1,15 X17,12,18,13 X19,5,20,4 X21,9,22,8

Gauss Code: {1, 7, -2, 10, -3, -1, 4, 11, -5, 2, -6, 9, -7, -4, 8, 3, -9, 6, -10, 5, -11, -8}

DT (Dowker-Thistlethwaite) Code: 6 -10 -16 14 -20 -18 -2 22 -12 -4 -8

Alexander Polynomial: - 2t-3 + 9t-2 - 14t-1 + 15 - 14t + 9t2 - 2t3

Conway Polynomial: 1 + 4z2 - 3z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {65, 4}

Jones Polynomial: 1 - 3q + 6q2 - 8q3 + 11q4 - 11q5 + 10q6 - 8q7 + 5q8 - 2q9

Other knots (up to mirrors) with the same Jones Polynomial: {K11n103, ...}

A2 (sl(3)) Invariant: 1 - q2 + q6 - q8 + 4q10 + 2q14 - 3q18 + q20 - 2q22 + 2q24 + q26 - q28 - q32

HOMFLY-PT Polynomial: - a-10 + 2a-8 + 3a-8z2 + a-8z4 - 3a-6 - 3a-6z2 - 3a-6z4 - a-6z6 + 3a-4 + 2a-4z2 - 2a-4z4 - a-4z6 + 2a-2z2 + a-2z4

Kauffman Polynomial: - 2a-11z + 3a-11z3 + a-10 - 4a-10z2 + 4a-10z4 + a-10z6 + 2a-9z3 - 2a-9z5 + 3a-9z7 + 2a-8 - 10a-8z2 + 15a-8z4 - 9a-8z6 + 4a-8z8 + 2a-7z - 5a-7z3 + a-7z5 - a-7z7 + 2a-7z9 + 3a-6 - 15a-6z2 + 25a-6z4 - 23a-6z6 + 8a-6z8 + 2a-5z3 - 6a-5z5 - a-5z7 + 2a-5z9 + 3a-4 - 7a-4z2 + 11a-4z4 - 12a-4z6 + 4a-4z8 + 6a-3z3 - 9a-3z5 + 3a-3z7 + 2a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 9}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11175. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 19         2
j = 17        3 
j = 15       52 
j = 13      53  
j = 11     65   
j = 9    55    
j = 7   36     
j = 5  35      
j = 3 14       
j = 1 2        
j = -11         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 175]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 175]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 11, 4, 10], X[5, 17, 6, 16], X[14, 8, 15, 7], 
 
>   X[9, 21, 10, 20], X[11, 18, 12, 19], X[13, 3, 14, 2], X[22, 16, 1, 15], 
 
>   X[17, 12, 18, 13], X[19, 5, 20, 4], X[21, 9, 22, 8]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 175]]
Out[4]=   
GaussCode[1, 7, -2, 10, -3, -1, 4, 11, -5, 2, -6, 9, -7, -4, 8, 3, -9, 6, -10, 
 
>   5, -11, -8]
In[5]:=
DTCode[Knot[11, NonAlternating, 175]]
Out[5]=   
DTCode[6, -10, -16, 14, -20, -18, -2, 22, -12, -4, -8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 175]][t]
Out[6]=   
     2    9    14             2      3
15 - -- + -- - -- - 14 t + 9 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, NonAlternating, 175]][z]
Out[7]=   
       2      4      6
1 + 4 z  - 3 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 175]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 175]], KnotSignature[Knot[11, NonAlternating, 175]]}
Out[9]=   
{65, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 175]][q]
Out[10]=   
             2      3       4       5       6      7      8      9
1 - 3 q + 6 q  - 8 q  + 11 q  - 11 q  + 10 q  - 8 q  + 5 q  - 2 q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 103], Knot[11, NonAlternating, 175]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 175]][q]
Out[12]=   
     2    6    8      10      14      18    20      22      24    26    28    32
1 - q  + q  - q  + 4 q   + 2 q   - 3 q   + q   - 2 q   + 2 q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 175]][a, z]
Out[13]=   
                          2      2      2      2    4      4      4    4    6
  -10   2    3    3    3 z    3 z    2 z    2 z    z    3 z    2 z    z    z
-a    + -- - -- + -- + ---- - ---- + ---- + ---- + -- - ---- - ---- + -- - -- - 
         8    6    4     8      6      4      2     8     6      4     2    6
        a    a    a     a      a      a      a     a     a      a     a    a
 
     6
    z
>   --
     4
    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 175]][a, z]
Out[14]=   
                                     2       2       2      2      2      3
 -10   2    3    3    2 z   2 z   4 z    10 z    15 z    7 z    2 z    3 z
a    + -- + -- + -- - --- + --- - ---- - ----- - ----- - ---- + ---- + ---- + 
        8    6    4    11    7     10      8       6       4      2     11
       a    a    a    a     a     a       a       a       a      a     a
 
       3      3      3      3      4       4       4       4      4      5
    2 z    5 z    2 z    6 z    4 z    15 z    25 z    11 z    3 z    2 z
>   ---- - ---- + ---- + ---- + ---- + ----- + ----- + ----- - ---- - ---- + 
      9      7      5      3     10      8       6       4       2      9
     a      a      a      a     a       a       a       a       a      a
 
     5      5      5    6       6       6       6    6      7    7    7
    z    6 z    9 z    z     9 z    23 z    12 z    z    3 z    z    z
>   -- - ---- - ---- + --- - ---- - ----- - ----- + -- + ---- - -- - -- + 
     7     5      3     10     8      6       4      2     9     7    5
    a     a      a     a      a      a       a      a     a     a    a
 
       7      8      8      8      9      9
    3 z    4 z    8 z    4 z    2 z    2 z
>   ---- + ---- + ---- + ---- + ---- + ----
      3      8      6      4      7      5
     a      a      a      a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 175]], Vassiliev[3][Knot[11, NonAlternating, 175]]}
Out[15]=   
{4, 9}
In[16]:=
Kh[Knot[11, NonAlternating, 175]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7        7  2      9  2      9  3
4 q  + 3 q  + ---- + --- + -- + 5 q  t + 3 q  t + 6 q  t  + 5 q  t  + 5 q  t  + 
                 2    t    t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   6 q   t  + 5 q   t  + 5 q   t  + 3 q   t  + 5 q   t  + 2 q   t  + 
 
       17  6      19  7
>   3 q   t  + 2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n175
K11n174
K11n174
K11n176
K11n176