© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n173
K11n173
K11n175
K11n175
K11n174
Knotscape
This page is passe. Go here instead!

   The Knot K11n174

Visit K11n174's page at Knotilus!

Acknowledgement

K11n174 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,11,4,10 X16,6,17,5 X14,7,15,8 X20,10,21,9 X11,5,12,4 X18,14,19,13 X2,16,3,15 X22,17,1,18 X8,20,9,19 X12,22,13,21

Gauss Code: {1, -8, -2, 6, 3, -1, 4, -10, 5, 2, -6, -11, 7, -4, 8, -3, 9, -7, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 -10 16 14 20 -4 18 2 22 8 12

Alexander Polynomial: - 2t-3 + 11t-2 - 22t-1 + 27 - 22t + 11t2 - 2t3

Conway Polynomial: 1 + 4z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a64, ...}

Determinant and Signature: {97, 4}

Jones Polynomial: 3q2 - 7q3 + 12q4 - 15q5 + 17q6 - 16q7 + 13q8 - 9q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 3q6 - 2q8 + 3q10 - 2q14 + 4q16 - 3q18 + 3q20 - 2q22 - q24 + 2q26 - 3q28 + 2q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 2a-8 + 6a-8z2 + 3a-8z4 - 3a-6 - 8a-6z2 - 7a-6z4 - 2a-6z6 + 3a-4 + 7a-4z2 + 3a-4z4

Kauffman Polynomial: - a-13z3 + a-13z5 + a-12z2 - 5a-12z4 + 4a-12z6 - 3a-11z + 8a-11z3 - 14a-11z5 + 8a-11z7 + a-10 - 3a-10z2 + 5a-10z4 - 12a-10z6 + 8a-10z8 - 3a-9z + 18a-9z3 - 27a-9z5 + 9a-9z7 + 3a-9z9 + 2a-8 - 9a-8z2 + 22a-8z4 - 28a-8z6 + 14a-8z8 - a-7z + 7a-7z3 - 12a-7z5 + 4a-7z7 + 3a-7z9 + 3a-6 - 14a-6z2 + 18a-6z4 - 12a-6z6 + 6a-6z8 - a-5z - 2a-5z3 + 3a-5z7 + 3a-4 - 9a-4z2 + 6a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 9}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11174. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23         1
j = 21        3 
j = 19       61 
j = 17      73  
j = 15     96   
j = 13    87    
j = 11   79     
j = 9  58      
j = 7 27       
j = 515        
j = 33         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 174]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 174]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 11, 4, 10], X[16, 6, 17, 5], X[14, 7, 15, 8], 
 
>   X[20, 10, 21, 9], X[11, 5, 12, 4], X[18, 14, 19, 13], X[2, 16, 3, 15], 
 
>   X[22, 17, 1, 18], X[8, 20, 9, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 174]]
Out[4]=   
GaussCode[1, -8, -2, 6, 3, -1, 4, -10, 5, 2, -6, -11, 7, -4, 8, -3, 9, -7, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 174]]
Out[5]=   
DTCode[6, -10, 16, 14, 20, -4, 18, 2, 22, 8, 12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 174]][t]
Out[6]=   
     2    11   22              2      3
27 - -- + -- - -- - 22 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, NonAlternating, 174]][z]
Out[7]=   
       2    4      6
1 + 4 z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 64], Knot[11, NonAlternating, 174]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 174]], KnotSignature[Knot[11, NonAlternating, 174]]}
Out[9]=   
{97, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 174]][q]
Out[10]=   
   2      3       4       5       6       7       8      9      10    11
3 q  - 7 q  + 12 q  - 15 q  + 17 q  - 16 q  + 13 q  - 9 q  + 4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 174]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 174]][q]
Out[12]=   
   6      8      10      14      16      18      20      22    24      26
3 q  - 2 q  + 3 q   - 2 q   + 4 q   - 3 q   + 3 q   - 2 q   - q   + 2 q   - 
 
       28      30    34
>   3 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 174]][a, z]
Out[13]=   
                        2       2      2      2      4      4      4      6
  -10   2    3    3    z     6 z    8 z    7 z    3 z    7 z    3 z    2 z
-a    + -- - -- + -- - --- + ---- - ---- + ---- + ---- - ---- + ---- - ----
         8    6    4    10     8      6      4      8      6      4      6
        a    a    a    a      a      a      a      a      a      a      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 174]][a, z]
Out[14]=   
                                             2       2      2       2      2
 -10   2    3    3    3 z   3 z   z    z    z     3 z    9 z    14 z    9 z
a    + -- + -- + -- - --- - --- - -- - -- + --- - ---- - ---- - ----- - ---- - 
        8    6    4    11    9     7    5    12    10      8      6       4
       a    a    a    a     a     a    a    a     a       a      a       a
 
     3       3       3      3      3      4      4       4       4      4
    z     8 z    18 z    7 z    2 z    5 z    5 z    22 z    18 z    6 z
>   --- + ---- + ----- + ---- - ---- - ---- + ---- + ----- + ----- + ---- + 
     13    11      9       7      5     12     10      8       6       4
    a     a       a       a      a     a      a       a       a       a
 
     5        5       5       5      6       6       6       6      7      7
    z     14 z    27 z    12 z    4 z    12 z    28 z    12 z    8 z    9 z
>   --- - ----- - ----- - ----- + ---- - ----- - ----- - ----- + ---- + ---- + 
     13     11      9       7      12      10      8       6      11      9
    a      a       a       a      a       a       a       a      a       a
 
       7      7      8       8      8      9      9
    4 z    3 z    8 z    14 z    6 z    3 z    3 z
>   ---- + ---- + ---- + ----- + ---- + ---- + ----
      7      5     10      8       6      9      7
     a      a     a       a       a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 174]], Vassiliev[3][Knot[11, NonAlternating, 174]]}
Out[15]=   
{4, 9}
In[16]:=
Kh[Knot[11, NonAlternating, 174]][q, t]
Out[16]=   
   3    5      5        7        7  2      9  2      9  3      11  3
3 q  + q  + 5 q  t + 2 q  t + 7 q  t  + 5 q  t  + 8 q  t  + 7 q   t  + 
 
       11  4      13  4      13  5      15  5      15  6      17  6
>   9 q   t  + 8 q   t  + 7 q   t  + 9 q   t  + 6 q   t  + 7 q   t  + 
 
       17  7      19  7    19  8      21  8    23  9
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n174
K11n173
K11n173
K11n175
K11n175