© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n175
K11n175
K11n177
K11n177
K11n176
Knotscape
This page is passe. Go here instead!

   The Knot K11n176

Visit K11n176's page at Knotilus!

Acknowledgement

K11n176 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X5,16,6,17 X18,7,19,8 X20,10,21,9 X2,11,3,12 X8,13,9,14 X15,4,16,5 X22,17,1,18 X12,20,13,19 X14,21,15,22

Gauss Code: {1, -6, 2, 8, -3, -1, 4, -7, 5, -2, 6, -10, 7, -11, -8, 3, 9, -4, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 10 -16 18 20 2 8 -4 22 12 14

Alexander Polynomial: t-3 - 6t-2 + 15t-1 - 19 + 15t - 6t2 + t3

Conway Polynomial: 1 + z6

Other knots with the same Alexander/Conway Polynomial: {K11n125, ...}

Determinant and Signature: {63, -2}

Jones Polynomial: q-9 - 3q-8 + 6q-7 - 9q-6 + 10q-5 - 11q-4 + 10q-3 - 7q-2 + 5q-1 - 1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 - q-24 + 2q-22 - 2q-20 - 3q-14 + q-12 - 2q-10 + 3q-8 + 2q-6 + 3q-2 - 1

HOMFLY-PT Polynomial: 2a2 - a2z4 + 3a4z2 + 3a4z4 + a4z6 - 2a6 - 4a6z2 - 2a6z4 + a8 + a8z2

Kauffman Polynomial: az3 - 2a2 - 2a2z2 + 5a2z4 + 2a3z + 2a3z7 - 9a4z2 + 18a4z4 - 11a4z6 + 4a4z8 + 2a5z - 2a5z5 - a5z7 + 2a5z9 + 2a6 - 12a6z2 + 23a6z4 - 23a6z6 + 8a6z8 - 2a7z + 8a7z3 - 11a7z5 + 2a7z9 + a8 - 3a8z2 + 7a8z4 - 11a8z6 + 4a8z8 - 2a9z + 7a9z3 - 9a9z5 + 3a9z7 + 2a10z2 - 3a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11176. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 1         1
j = -1        4 
j = -3       42 
j = -5      63  
j = -7     54   
j = -9    56    
j = -11   45     
j = -13  25      
j = -15 14       
j = -17 2        
j = -191         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 176]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 176]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[5, 16, 6, 17], X[18, 7, 19, 8], 
 
>   X[20, 10, 21, 9], X[2, 11, 3, 12], X[8, 13, 9, 14], X[15, 4, 16, 5], 
 
>   X[22, 17, 1, 18], X[12, 20, 13, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 176]]
Out[4]=   
GaussCode[1, -6, 2, 8, -3, -1, 4, -7, 5, -2, 6, -10, 7, -11, -8, 3, 9, -4, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 176]]
Out[5]=   
DTCode[6, 10, -16, 18, 20, 2, 8, -4, 22, 12, 14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 176]][t]
Out[6]=   
       -3   6    15             2    3
-19 + t   - -- + -- + 15 t - 6 t  + t
             2   t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 176]][z]
Out[7]=   
     6
1 + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 125], Knot[11, NonAlternating, 176]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 176]], KnotSignature[Knot[11, NonAlternating, 176]]}
Out[9]=   
{63, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 176]][q]
Out[10]=   
      -9   3    6    9    10   11   10   7    5
-1 + q   - -- + -- - -- + -- - -- + -- - -- + -
            8    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 176]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 176]][q]
Out[12]=   
      -28    -24    2     2     3     -12    2    3    2    3
-1 + q    - q    + --- - --- - --- + q    - --- + -- + -- + --
                    22    20    14           10    8    6    2
                   q     q     q            q     q    q    q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 176]][a, z]
Out[13]=   
   2      6    8      4  2      6  2    8  2    2  4      4  4      6  4    4  6
2 a  - 2 a  + a  + 3 a  z  - 4 a  z  + a  z  - a  z  + 3 a  z  - 2 a  z  + a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 176]][a, z]
Out[14]=   
    2      6    8      3        5        7        9        2  2      4  2
-2 a  + 2 a  + a  + 2 a  z + 2 a  z - 2 a  z - 2 a  z - 2 a  z  - 9 a  z  - 
 
        6  2      8  2      10  2      3      7  3      9  3      2  4
>   12 a  z  - 3 a  z  + 2 a   z  + a z  + 8 a  z  + 7 a  z  + 5 a  z  + 
 
        4  4       6  4      8  4      10  4      5  5       7  5      9  5
>   18 a  z  + 23 a  z  + 7 a  z  - 3 a   z  - 2 a  z  - 11 a  z  - 9 a  z  - 
 
        4  6       6  6       8  6    10  6      3  7    5  7      9  7
>   11 a  z  - 23 a  z  - 11 a  z  + a   z  + 2 a  z  - a  z  + 3 a  z  + 
 
       4  8      6  8      8  8      5  9      7  9
>   4 a  z  + 8 a  z  + 4 a  z  + 2 a  z  + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 176]], Vassiliev[3][Knot[11, NonAlternating, 176]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, NonAlternating, 176]][q, t]
Out[16]=   
2    4     1        2        1        4        2        5        4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        5       6       5       4       6      3      4
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + q t
     11  4    9  4    9  3    7  3    7  2    5  2    5      3
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n176
K11n175
K11n175
K11n177
K11n177