© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n155
K11n155
K11n157
K11n157
K11n156
Knotscape
This page is passe. Go here instead!

   The Knot K11n156

Visit K11n156's page at Knotilus!

Acknowledgement

K11n156 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,11,4,10 X12,6,13,5 X14,7,15,8 X16,10,17,9 X11,19,12,18 X22,13,1,14 X20,16,21,15 X17,4,18,5 X2,19,3,20 X8,21,9,22

Gauss Code: {1, -10, -2, 9, 3, -1, 4, -11, 5, 2, -6, -3, 7, -4, 8, -5, -9, 6, 10, -8, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 -10 12 14 16 -18 22 20 -4 2 8

Alexander Polynomial: - t-3 + 7t-2 - 18t-1 + 25 - 18t + 7t2 - t3

Conway Polynomial: 1 + z2 + z4 - z6

Other knots with the same Alexander/Conway Polynomial: {1071, K11n179, ...}

Determinant and Signature: {77, 0}

Jones Polynomial: - 2q-3 + 6q-2 - 9q-1 + 12 - 13q + 13q2 - 10q3 + 7q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - 2q-10 + q-8 + 2q-6 - 2q-4 + 3q-2 - 1 + q2 + 2q4 - q6 + 3q8 - 3q10 + q14 - 2q16 + q18

HOMFLY-PT Polynomial: a-4z2 + a-4z4 - a-2 - 4a-2z2 - 3a-2z4 - a-2z6 + 3 + 6z2 + 3z4 - a2 - 2a2z2

Kauffman Polynomial: - 2a-6z4 + a-6z6 + 6a-5z3 - 11a-5z5 + 4a-5z7 - 3a-4z2 + 14a-4z4 - 18a-4z6 + 6a-4z8 - a-3z + 11a-3z3 - 14a-3z5 - a-3z7 + 3a-3z9 + a-2 - 12a-2z2 + 33a-2z4 - 35a-2z6 + 12a-2z8 - 2a-1z + 5a-1z3 - 6a-1z5 - a-1z7 + 3a-1z9 + 3 - 15z2 + 23z4 - 15z6 + 6z8 - 2az + 3az3 - 3az5 + 4az7 + a2 - 6a2z2 + 6a2z4 + a2z6 - a3z + 3a3z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11156. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13         1
j = 11        3 
j = 9       41 
j = 7      63  
j = 5     74   
j = 3    66    
j = 1   67     
j = -1  47      
j = -3 25       
j = -5 4        
j = -72         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 156]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 156]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 11, 4, 10], X[12, 6, 13, 5], X[14, 7, 15, 8], 
 
>   X[16, 10, 17, 9], X[11, 19, 12, 18], X[22, 13, 1, 14], X[20, 16, 21, 15], 
 
>   X[17, 4, 18, 5], X[2, 19, 3, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 156]]
Out[4]=   
GaussCode[1, -10, -2, 9, 3, -1, 4, -11, 5, 2, -6, -3, 7, -4, 8, -5, -9, 6, 10, 
 
>   -8, 11, -7]
In[5]:=
DTCode[Knot[11, NonAlternating, 156]]
Out[5]=   
DTCode[6, -10, 12, 14, 16, -18, 22, 20, -4, 2, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 156]][t]
Out[6]=   
      -3   7    18             2    3
25 - t   + -- - -- - 18 t + 7 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 156]][z]
Out[7]=   
     2    4    6
1 + z  + z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 71], Knot[11, NonAlternating, 156], Knot[11, NonAlternating, 179]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 156]], KnotSignature[Knot[11, NonAlternating, 156]]}
Out[9]=   
{77, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 156]][q]
Out[10]=   
     2    6    9              2       3      4      5    6
12 - -- + -- - - - 13 q + 13 q  - 10 q  + 7 q  - 4 q  + q
      3    2   q
     q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 156]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 156]][q]
Out[12]=   
      2     -8   2    2    3     2      4    6      8      10    14      16
-1 - --- + q   + -- - -- + -- + q  + 2 q  - q  + 3 q  - 3 q   + q   - 2 q   + 
      10          6    4    2
     q           q    q    q
 
     18
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 156]][a, z]
Out[13]=   
                       2      2                     4      4    6
     -2    2      2   z    4 z       2  2      4   z    3 z    z
3 - a   - a  + 6 z  + -- - ---- - 2 a  z  + 3 z  + -- - ---- - --
                       4     2                      4     2     2
                      a     a                      a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 156]][a, z]
Out[14]=   
                                                    2       2
     -2    2   z    2 z            3         2   3 z    12 z       2  2
3 + a   + a  - -- - --- - 2 a z - a  z - 15 z  - ---- - ----- - 6 a  z  + 
                3    a                             4      2
               a                                  a      a
 
       3       3      3                                 4       4       4
    6 z    11 z    5 z         3      3  3       4   2 z    14 z    33 z
>   ---- + ----- + ---- + 3 a z  + 3 a  z  + 23 z  - ---- + ----- + ----- + 
      5      3      a                                  6      4       2
     a      a                                         a      a       a
 
                  5       5      5                     6       6       6
       2  4   11 z    14 z    6 z         5       6   z    18 z    35 z
>   6 a  z  - ----- - ----- - ---- - 3 a z  - 15 z  + -- - ----- - ----- + 
                5       3      a                       6     4       2
               a       a                              a     a       a
 
               7    7    7                      8       8      9      9
     2  6   4 z    z    z         7      8   6 z    12 z    3 z    3 z
>   a  z  + ---- - -- - -- + 4 a z  + 6 z  + ---- + ----- + ---- + ----
              5     3   a                      4      2       3     a
             a     a                          a      a       a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 156]], Vassiliev[3][Knot[11, NonAlternating, 156]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 156]][q, t]
Out[16]=   
7           2       4       2      5      4               3        3  2
- + 6 q + ----- + ----- + ----- + ---- + --- + 7 q t + 6 q  t + 6 q  t  + 
q          7  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t
 
       5  2      5  3      7  3      7  4      9  4    9  5      11  5    13  6
>   7 q  t  + 4 q  t  + 6 q  t  + 3 q  t  + 4 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n156
K11n155
K11n155
K11n157
K11n157