© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n156
K11n156
K11n158
K11n158
K11n157
Knotscape
This page is passe. Go here instead!

   The Knot K11n157

Visit K11n157's page at Knotilus!

Acknowledgement

K11n157 as Morse Link
DrawMorseLink

PD Presentation: X6271 X3,11,4,10 X5,12,6,13 X14,7,15,8 X9,16,10,17 X11,19,12,18 X22,13,1,14 X20,16,21,15 X17,4,18,5 X19,3,20,2 X8,21,9,22

Gauss Code: {1, 10, -2, 9, -3, -1, 4, -11, -5, 2, -6, 3, 7, -4, 8, 5, -9, 6, -10, -8, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 -10 -12 14 -16 -18 22 20 -4 -2 8

Alexander Polynomial: - t-3 + 6t-2 - 15t-1 + 21 - 15t + 6t2 - t3

Conway Polynomial: 1 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {65, 0}

Jones Polynomial: q-6 - 4q-5 + 7q-4 - 9q-3 + 11q-2 - 11q-1 + 10 - 7q + 4q2 - q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-18 - 2q-16 + q-14 - 2q-10 + 3q-8 - q-6 + 2q-4 - 1 + 2q2 - 2q4 + 2q6 + q8 - q10

HOMFLY-PT Polynomial: - a-2z2 + 1 + 3z2 + 2z4 - 3a2z2 - 3a2z4 - a2z6 + a4z2 + a4z4

Kauffman Polynomial: a-3z3 - 2a-2z2 + 4a-2z4 - a-1z3 + 3a-1z5 + a-1z7 + 1 - 5z2 + 10z4 - 6z6 + 3z8 + az3 - 2az5 - az7 + 2az9 - 3a2z2 + 13a2z4 - 20a2z6 + 8a2z8 + 9a3z3 - 16a3z5 + 2a3z7 + 2a3z9 + a4z2 + 5a4z4 - 13a4z6 + 5a4z8 + 6a5z3 - 11a5z5 + 4a5z7 + a6z2 - 2a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 7         1
j = 5        3 
j = 3       41 
j = 1      63  
j = -1     65   
j = -3    55    
j = -5   46     
j = -7  35      
j = -9 14       
j = -11 3        
j = -131         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 157]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 157]]
Out[3]=   
PD[X[6, 2, 7, 1], X[3, 11, 4, 10], X[5, 12, 6, 13], X[14, 7, 15, 8], 
 
>   X[9, 16, 10, 17], X[11, 19, 12, 18], X[22, 13, 1, 14], X[20, 16, 21, 15], 
 
>   X[17, 4, 18, 5], X[19, 3, 20, 2], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 157]]
Out[4]=   
GaussCode[1, 10, -2, 9, -3, -1, 4, -11, -5, 2, -6, 3, 7, -4, 8, 5, -9, 6, -10, 
 
>   -8, 11, -7]
In[5]:=
DTCode[Knot[11, NonAlternating, 157]]
Out[5]=   
DTCode[6, -10, -12, 14, -16, -18, 22, 20, -4, -2, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 157]][t]
Out[6]=   
      -3   6    15             2    3
21 - t   + -- - -- - 15 t + 6 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 157]][z]
Out[7]=   
     6
1 - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 157]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 157]], KnotSignature[Knot[11, NonAlternating, 157]]}
Out[9]=   
{65, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 157]][q]
Out[10]=   
      -6   4    7    9    11   11            2    3
10 + q   - -- + -- - -- + -- - -- - 7 q + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 157]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 157]][q]
Out[12]=   
      -18    2     -14    2    3     -6   2       2      4      6    8    10
-1 + q    - --- + q    - --- + -- - q   + -- + 2 q  - 2 q  + 2 q  + q  - q
             16           10    8          4
            q            q     q          q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 157]][a, z]
Out[13]=   
            2
       2   z       2  2    4  2      4      2  4    4  4    2  6
1 + 3 z  - -- - 3 a  z  + a  z  + 2 z  - 3 a  z  + a  z  - a  z
            2
           a
In[14]:=
Kauffman[Knot[11, NonAlternating, 157]][a, z]
Out[14]=   
              2                              3    3
       2   2 z       2  2    4  2    6  2   z    z       3      3  3
1 - 5 z  - ---- - 3 a  z  + a  z  + a  z  + -- - -- + a z  + 9 a  z  + 
             2                               3   a
            a                               a
 
                         4                                     5
       5  3       4   4 z        2  4      4  4      6  4   3 z         5
>   6 a  z  + 10 z  + ---- + 13 a  z  + 5 a  z  - 2 a  z  + ---- - 2 a z  - 
                        2                                    a
                       a
 
                                                                7
        3  5       5  5      6       2  6       4  6    6  6   z       7
>   16 a  z  - 11 a  z  - 6 z  - 20 a  z  - 13 a  z  + a  z  + -- - a z  + 
                                                               a
 
       3  7      5  7      8      2  8      4  8        9      3  9
>   2 a  z  + 4 a  z  + 3 z  + 8 a  z  + 5 a  z  + 2 a z  + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 157]], Vassiliev[3][Knot[11, NonAlternating, 157]]}
Out[15]=   
{0, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 157]][q, t]
Out[16]=   
5           1        3        1       4       3       5       4       6
- + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q          13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
          q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      5      5      6               3      3  2      5  2    7  3
>   ----- + ---- + --- + 3 q t + 4 q  t + q  t  + 3 q  t  + q  t
     3  2    3     q t
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n157
K11n156
K11n156
K11n158
K11n158