© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n154
K11n154
K11n156
K11n156
K11n155
Knotscape
This page is passe. Go here instead!

   The Knot K11n155

Visit K11n155's page at Knotilus!

Acknowledgement

K11n155 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X12,6,13,5 X20,8,21,7 X18,9,19,10 X16,11,17,12 X13,1,14,22 X4,16,5,15 X10,17,11,18 X2,19,3,20 X21,15,22,14

Gauss Code: {1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, -7, 11, 8, -6, 9, -5, 10, -4, -11, 7}

DT (Dowker-Thistlethwaite) Code: 6 8 12 20 18 16 -22 4 10 2 -14

Alexander Polynomial: 2t-3 - 8t-2 + 11t-1 - 9 + 11t - 8t2 + 2t3

Conway Polynomial: 1 - 3z2 + 4z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {51, 2}

Jones Polynomial: - q-4 + 3q-3 - 4q-2 + 7q-1 - 8 + 8q - 8q2 + 6q3 - 4q4 + 2q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + q-10 + q-8 + q-6 + 2q-4 - q-2 + 1 - q2 - q4 + q6 - 2q8 + q10 - q12 + q16 + q20

HOMFLY-PT Polynomial: a-6 - a-4 - 3a-4z2 - a-4z4 + a-2z2 + 3a-2z4 + a-2z6 + z2 + 3z4 + z6 + a2 - 2a2z2 - a2z4

Kauffman Polynomial: - a-6 + 3a-6z2 - a-5z + 3a-5z3 + a-5z5 - a-4 + 3a-4z2 - 3a-4z4 + 3a-4z6 + 3a-3z - a-3z3 - 6a-3z5 + 4a-3z7 - 6a-2z2 + 8a-2z4 - 10a-2z6 + 4a-2z8 + 6a-1z - 7a-1z3 - a-1z5 - 3a-1z7 + 2a-1z9 - 12z2 + 30z4 - 27z6 + 7z8 + 2az + az3 + 2az5 - 6az7 + 2az9 - a2 - 6a2z2 + 19a2z4 - 14a2z6 + 3a2z8 + 4a3z3 - 4a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-3, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11155. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 11         2
j = 9        2 
j = 7       42 
j = 5      42  
j = 3     44   
j = 1    55    
j = -1   23     
j = -3  25      
j = -5 12       
j = -7 2        
j = -91         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 155]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 155]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], 
 
>   X[18, 9, 19, 10], X[16, 11, 17, 12], X[13, 1, 14, 22], X[4, 16, 5, 15], 
 
>   X[10, 17, 11, 18], X[2, 19, 3, 20], X[21, 15, 22, 14]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 155]]
Out[4]=   
GaussCode[1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, -7, 11, 8, -6, 9, -5, 10, 
 
>   -4, -11, 7]
In[5]:=
DTCode[Knot[11, NonAlternating, 155]]
Out[5]=   
DTCode[6, 8, 12, 20, 18, 16, -22, 4, 10, 2, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 155]][t]
Out[6]=   
     2    8    11             2      3
-9 + -- - -- + -- + 11 t - 8 t  + 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, NonAlternating, 155]][z]
Out[7]=   
       2      4      6
1 - 3 z  + 4 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 155]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 155]], KnotSignature[Knot[11, NonAlternating, 155]]}
Out[9]=   
{51, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 155]][q]
Out[10]=   
      -4   3    4    7            2      3      4      5
-8 - q   + -- - -- + - + 8 q - 8 q  + 6 q  - 4 q  + 2 q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 155]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 155]][q]
Out[12]=   
     -12    -10    -8    -6   2     -2    2    4    6      8    10    12
1 - q    + q    + q   + q   + -- - q   - q  - q  + q  - 2 q  + q   - q   + 
                               4
                              q
 
     16    20
>   q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 155]][a, z]
Out[13]=   
                         2    2                     4      4                 6
 -6    -4    2    2   3 z    z       2  2      4   z    3 z     2  4    6   z
a   - a   + a  + z  - ---- + -- - 2 a  z  + 3 z  - -- + ---- - a  z  + z  + --
                        4     2                     4     2                  2
                       a     a                     a     a                  a
In[14]:=
Kauffman[Knot[11, NonAlternating, 155]][a, z]
Out[14]=   
                                                      2      2      2
  -6    -4    2   z    3 z   6 z               2   3 z    3 z    6 z
-a   - a   - a  - -- + --- + --- + 2 a z - 12 z  + ---- + ---- - ---- - 
                   5    3     a                      6      4      2
                  a    a                            a      a      a
 
                 3    3      3                               4      4
       2  2   3 z    z    7 z       3      3  3       4   3 z    8 z
>   6 a  z  + ---- - -- - ---- + a z  + 4 a  z  + 30 z  - ---- + ---- + 
                5     3    a                                4      2
               a     a                                     a      a
 
                5      5    5                                 6       6
        2  4   z    6 z    z         5      3  5       6   3 z    10 z
>   19 a  z  + -- - ---- - -- + 2 a z  - 4 a  z  - 27 z  + ---- - ----- - 
                5     3    a                                 4      2
               a     a                                      a      a
 
                  7      7                              8                9
        2  6   4 z    3 z         7    3  7      8   4 z       2  8   2 z
>   14 a  z  + ---- - ---- - 6 a z  + a  z  + 7 z  + ---- + 3 a  z  + ---- + 
                 3     a                               2               a
                a                                     a
 
         9
>   2 a z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 155]], Vassiliev[3][Knot[11, NonAlternating, 155]]}
Out[15]=   
{-3, -3}
In[16]:=
Kh[Knot[11, NonAlternating, 155]][q, t]
Out[16]=   
         3     1       2       1       2       2       5      2      3    5 q
5 q + 4 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              9  5    7  4    5  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q  t    q  t    q t
 
       3        5        5  2      7  2      7  3      9  3      11  4
>   4 q  t + 4 q  t + 2 q  t  + 4 q  t  + 2 q  t  + 2 q  t  + 2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n155
K11n154
K11n154
K11n156
K11n156