© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n143
K11n143
K11n145
K11n145
K11n144
Knotscape
This page is passe. Go here instead!

   The Knot K11n144

Visit K11n144's page at Knotilus!

Acknowledgement

K11n144 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X18,6,19,5 X7,15,8,14 X16,10,17,9 X2,12,3,11 X22,13,1,14 X15,20,16,21 X10,18,11,17 X6,20,7,19 X21,9,22,8

Gauss Code: {1, -6, 2, -1, 3, -10, -4, 11, 5, -9, 6, -2, 7, 4, -8, -5, 9, -3, 10, 8, -11, -7}

DT (Dowker-Thistlethwaite) Code: 4 12 18 -14 16 2 22 -20 10 6 -8

Alexander Polynomial: - t-3 + 7t-2 - 15t-1 + 19 - 15t + 7t2 - t3

Conway Polynomial: 1 + 4z2 + z4 - z6

Other knots with the same Alexander/Conway Polynomial: {K11n10, K11n103, ...}

Determinant and Signature: {65, 4}

Jones Polynomial: 2q2 - 4q3 + 8q4 - 10q5 + 11q6 - 11q7 + 9q8 - 6q9 + 3q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {K11n10, ...}

A2 (sl(3)) Invariant: 2q6 - q8 + 3q10 + q12 - q14 + 2q16 - 3q18 + q20 - q22 + 2q26 - 2q28 + q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 2a-8 + 4a-8z2 + 2a-8z4 - 3a-6 - 4a-6z2 - 3a-6z4 - a-6z6 + 3a-4 + 5a-4z2 + 2a-4z4

Kauffman Polynomial: - 2a-13z3 + a-13z5 + 2a-12z2 - 6a-12z4 + 3a-12z6 - 4a-11z + 10a-11z3 - 12a-11z5 + 5a-11z7 + a-10 - 3a-10z2 + 5a-10z4 - 7a-10z6 + 4a-10z8 - 6a-9z + 21a-9z3 - 21a-9z5 + 7a-9z7 + a-9z9 + 2a-8 - 9a-8z2 + 16a-8z4 - 13a-8z6 + 6a-8z8 - 4a-7z + 8a-7z3 - 7a-7z5 + 3a-7z7 + a-7z9 + 3a-6 - 10a-6z2 + 8a-6z4 - 3a-6z6 + 2a-6z8 - 2a-5z - a-5z3 + a-5z5 + a-5z7 + 3a-4 - 6a-4z2 + 3a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 9}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11144. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23         1
j = 21        2 
j = 19       41 
j = 17      52  
j = 15     64   
j = 13    55    
j = 11   56     
j = 9  35      
j = 7 15       
j = 513        
j = 32         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 144]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 144]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[18, 6, 19, 5], X[7, 15, 8, 14], 
 
>   X[16, 10, 17, 9], X[2, 12, 3, 11], X[22, 13, 1, 14], X[15, 20, 16, 21], 
 
>   X[10, 18, 11, 17], X[6, 20, 7, 19], X[21, 9, 22, 8]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 144]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, -4, 11, 5, -9, 6, -2, 7, 4, -8, -5, 9, -3, 10, 
 
>   8, -11, -7]
In[5]:=
DTCode[Knot[11, NonAlternating, 144]]
Out[5]=   
DTCode[4, 12, 18, -14, 16, 2, 22, -20, 10, 6, -8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 144]][t]
Out[6]=   
      -3   7    15             2    3
19 - t   + -- - -- - 15 t + 7 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 144]][z]
Out[7]=   
       2    4    6
1 + 4 z  + z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 10], Knot[11, NonAlternating, 103], 
 
>   Knot[11, NonAlternating, 144]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 144]], KnotSignature[Knot[11, NonAlternating, 144]]}
Out[9]=   
{65, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 144]][q]
Out[10]=   
   2      3      4       5       6       7      8      9      10    11
2 q  - 4 q  + 8 q  - 10 q  + 11 q  - 11 q  + 9 q  - 6 q  + 3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 10], Knot[11, NonAlternating, 144]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 144]][q]
Out[12]=   
   6    8      10    12    14      16      18    20    22      26      28
2 q  - q  + 3 q   + q   - q   + 2 q   - 3 q   + q   - q   + 2 q   - 2 q   + 
 
     30    34
>   q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 144]][a, z]
Out[13]=   
                        2       2      2      2      4      4      4    6
  -10   2    3    3    z     4 z    4 z    5 z    2 z    3 z    2 z    z
-a    + -- - -- + -- - --- + ---- - ---- + ---- + ---- - ---- + ---- - --
         8    6    4    10     8      6      4      8      6      4     6
        a    a    a    a      a      a      a      a      a      a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 144]][a, z]
Out[14]=   
                                                 2      2      2       2
 -10   2    3    3    4 z   6 z   4 z   2 z   2 z    3 z    9 z    10 z
a    + -- + -- + -- - --- - --- - --- - --- + ---- - ---- - ---- - ----- - 
        8    6    4    11    9     7     5     12     10      8      6
       a    a    a    a     a     a     a     a      a       a      a
 
       2      3       3       3      3    3      4      4       4      4
    6 z    2 z    10 z    21 z    8 z    z    6 z    5 z    16 z    8 z
>   ---- - ---- + ----- + ----- + ---- - -- - ---- + ---- + ----- + ---- + 
      4     13      11      9       7     5    12     10      8       6
     a     a       a       a       a     a    a      a       a       a
 
       4    5        5       5      5    5      6      6       6      6
    3 z    z     12 z    21 z    7 z    z    3 z    7 z    13 z    3 z
>   ---- + --- - ----- - ----- - ---- + -- + ---- - ---- - ----- - ---- + 
      4     13     11      9       7     5    12     10      8       6
     a     a      a       a       a     a    a      a       a       a
 
       7      7      7    7      8      8      8    9    9
    5 z    7 z    3 z    z    4 z    6 z    2 z    z    z
>   ---- + ---- + ---- + -- + ---- + ---- + ---- + -- + --
     11      9      7     5    10      8      6     9    7
    a       a      a     a    a       a      a     a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 144]], Vassiliev[3][Knot[11, NonAlternating, 144]]}
Out[15]=   
{4, 9}
In[16]:=
Kh[Knot[11, NonAlternating, 144]][q, t]
Out[16]=   
   3    5      5      7        7  2      9  2      9  3      11  3      11  4
2 q  + q  + 3 q  t + q  t + 5 q  t  + 3 q  t  + 5 q  t  + 5 q   t  + 6 q   t  + 
 
       13  4      13  5      15  5      15  6      17  6      17  7
>   5 q   t  + 5 q   t  + 6 q   t  + 4 q   t  + 5 q   t  + 2 q   t  + 
 
       19  7    19  8      21  8    23  9
>   4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n144
K11n143
K11n143
K11n145
K11n145