© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n142
K11n142
K11n144
K11n144
K11n143
Knotscape
This page is passe. Go here instead!

   The Knot K11n143

Visit K11n143's page at Knotilus!

Acknowledgement

K11n143 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X5,16,6,17 X22,8,1,7 X9,18,10,19 X2,12,3,11 X13,21,14,20 X15,10,16,11 X17,6,18,7 X19,15,20,14 X8,22,9,21

Gauss Code: {1, -6, 2, -1, -3, 9, 4, -11, -5, 8, 6, -2, -7, 10, -8, 3, -9, 5, -10, 7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 4 12 -16 22 -18 2 -20 -10 -6 -14 8

Alexander Polynomial: - t-3 + 2t-2 - t-1 + 1 - t + 2t2 - t3

Conway Polynomial: 1 - 2z2 - 4z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {9, 0}

Jones Polynomial: q-3 - q-2 + 1 - q + 2q2 - 2q3 + 2q4 - 2q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 + q-6 - q2 + q4 + q8 - q12 + q18

HOMFLY-PT Polynomial: a-4 + 3a-4z2 + a-4z4 - a-2 - 6a-2z2 - 5a-2z4 - a-2z6 + a2 + a2z2

Kauffman Polynomial: 3a-6z2 - 4a-6z4 + a-6z6 - 2a-5z + 9a-5z3 - 9a-5z5 + 2a-5z7 + a-4 - 2a-4z2 + 3a-4z4 - 4a-4z6 + a-4z8 - 4a-3z + 12a-3z3 - 10a-3z5 + 2a-3z7 + a-2 - 7a-2z2 + 10a-2z4 - 6a-2z6 + a-2z8 - 4a-1z + 11a-1z3 - 7a-1z5 + a-1z7 + 3z2 - 2z4 - 2az + 8az3 - 6az5 + az7 - a2 + 5a2z2 - 5a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11143. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13          1
j = 11         1 
j = 9        11 
j = 7      121  
j = 5      11   
j = 3    122    
j = 1   121     
j = -1   12      
j = -3 111       
j = -5           
j = -71          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 143]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 143]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[5, 16, 6, 17], X[22, 8, 1, 7], 
 
>   X[9, 18, 10, 19], X[2, 12, 3, 11], X[13, 21, 14, 20], X[15, 10, 16, 11], 
 
>   X[17, 6, 18, 7], X[19, 15, 20, 14], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 143]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 9, 4, -11, -5, 8, 6, -2, -7, 10, -8, 3, -9, 5, -10, 
 
>   7, 11, -4]
In[5]:=
DTCode[Knot[11, NonAlternating, 143]]
Out[5]=   
DTCode[4, 12, -16, 22, -18, 2, -20, -10, -6, -14, 8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 143]][t]
Out[6]=   
     -3   2    1          2    3
1 - t   + -- - - - t + 2 t  - t
           2   t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 143]][z]
Out[7]=   
       2      4    6
1 - 2 z  - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 143]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 143]], KnotSignature[Knot[11, NonAlternating, 143]]}
Out[9]=   
{9, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 143]][q]
Out[10]=   
     -3    -2          2      3      4      5    6
1 + q   - q   - q + 2 q  - 2 q  + 2 q  - 2 q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 143]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 143]][q]
Out[12]=   
 -10    -6    2    4    8    12    18
q    + q   - q  + q  + q  - q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 143]][a, z]
Out[13]=   
                    2      2            4      4    6
 -4    -2    2   3 z    6 z     2  2   z    5 z    z
a   - a   + a  + ---- - ---- + a  z  + -- - ---- - --
                   4      2             4     2     2
                  a      a             a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 143]][a, z]
Out[14]=   
                                                     2      2      2
 -4    -2    2   2 z   4 z   4 z              2   3 z    2 z    7 z
a   + a   - a  - --- - --- - --- - 2 a z + 3 z  + ---- - ---- - ---- + 
                  5     3     a                     6      4      2
                 a     a                           a      a      a
 
                 3       3       3                      4      4       4
       2  2   9 z    12 z    11 z         3      4   4 z    3 z    10 z
>   5 a  z  + ---- + ----- + ----- + 8 a z  - 2 z  - ---- + ---- + ----- - 
                5      3       a                       6      4      2
               a      a                               a      a      a
 
                 5       5      5             6      6      6              7
       2  4   9 z    10 z    7 z         5   z    4 z    6 z     2  6   2 z
>   5 a  z  - ---- - ----- - ---- - 6 a z  + -- - ---- - ---- + a  z  + ---- + 
                5      3      a               6     4      2              5
               a      a                      a     a      a              a
 
       7    7           8    8
    2 z    z       7   z    z
>   ---- + -- + a z  + -- + --
      3    a            4    2
     a                 a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 143]], Vassiliev[3][Knot[11, NonAlternating, 143]]}
Out[15]=   
{-2, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 143]][q, t]
Out[16]=   
2          3     1       1       1      1      1    q            3
- + 2 q + q  + ----- + ----- + ----- + ---- + --- + - + q t + 2 q  t + 
q               7  4    3  3    3  2    3     q t   t
               q  t    q  t    q  t    q  t
 
       3  2    5  2    7  2    5  3      7  3    7  4    9  4    9  5
>   2 q  t  + q  t  + q  t  + q  t  + 2 q  t  + q  t  + q  t  + q  t  + 
 
     11  5    13  6
>   q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n143
K11n142
K11n142
K11n144
K11n144