© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n144
K11n144
K11n146
K11n146
K11n145
Knotscape
This page is passe. Go here instead!

   The Knot K11n145

Visit K11n145's page at Knotilus!

Acknowledgement

K11n145 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X5,11,6,10 X7,20,8,21 X9,1,10,22 X18,11,19,12 X2,14,3,13 X15,9,16,8 X17,6,18,7 X12,19,13,20 X21,16,22,17

Gauss Code: {1, -7, 2, -1, -3, 9, -4, 8, -5, 3, 6, -10, 7, -2, -8, 11, -9, -6, 10, 4, -11, 5}

DT (Dowker-Thistlethwaite) Code: 4 14 -10 -20 -22 18 2 -8 -6 12 -16

Alexander Polynomial: t-3 - t-2 - 3t-1 + 7 - 3t - t2 + t3

Conway Polynomial: 1 + 2z2 + 5z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {9, 0}

Jones Polynomial: - q-4 + q-3 + 2 - 2q + 2q2 - 2q3 + 2q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 - q-10 + q-6 + 2q-2 + 2 + q2 + q4 - q6 - q10 + q14 - q16

HOMFLY-PT Polynomial: - a-4z2 - 2a-2 - 2a-2z2 + 5 + 9z2 + 6z4 + z6 - 2a2 - 4a2z2 - a2z4

Kauffman Polynomial: a-5z - 3a-5z3 + a-5z5 + 4a-4z2 - 7a-4z4 + 2a-4z6 + a-3z3 - 3a-3z5 + a-3z7 + 2a-2 - 2a-2z2 - 2a-2z4 + a-2z6 - 4a-1z + 10a-1z3 - 6a-1z5 + a-1z7 + 5 - 16z2 + 19z4 - 8z6 + z8 - 6az + 15az3 - 8az5 + az7 + 2a2 - 10a2z2 + 14a2z4 - 7a2z6 + a2z8 - 3a3z + 9a3z3 - 6a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11145. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11          1
j = 9         1 
j = 7        11 
j = 5      121  
j = 3      11   
j = 1    132    
j = -1   112     
j = -3   11      
j = -5 111       
j = -7           
j = -91          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 145]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 145]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[5, 11, 6, 10], X[7, 20, 8, 21], 
 
>   X[9, 1, 10, 22], X[18, 11, 19, 12], X[2, 14, 3, 13], X[15, 9, 16, 8], 
 
>   X[17, 6, 18, 7], X[12, 19, 13, 20], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 145]]
Out[4]=   
GaussCode[1, -7, 2, -1, -3, 9, -4, 8, -5, 3, 6, -10, 7, -2, -8, 11, -9, -6, 10, 
 
>   4, -11, 5]
In[5]:=
DTCode[Knot[11, NonAlternating, 145]]
Out[5]=   
DTCode[4, 14, -10, -20, -22, 18, 2, -8, -6, 12, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 145]][t]
Out[6]=   
     -3    -2   3          2    3
7 + t   - t   - - - 3 t - t  + t
                t
In[7]:=
Conway[Knot[11, NonAlternating, 145]][z]
Out[7]=   
       2      4    6
1 + 2 z  + 5 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 145]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 145]], KnotSignature[Knot[11, NonAlternating, 145]]}
Out[9]=   
{9, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 145]][q]
Out[10]=   
     -4    -3            2      3      4    5
2 - q   + q   - 2 q + 2 q  - 2 q  + 2 q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 145]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 145]][q]
Out[12]=   
     -12    -10    -6   2     2    4    6    10    14    16
2 - q    - q    + q   + -- + q  + q  - q  - q   + q   - q
                         2
                        q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 145]][a, z]
Out[13]=   
                        2      2
    2       2      2   z    2 z       2  2      4    2  4    6
5 - -- - 2 a  + 9 z  - -- - ---- - 4 a  z  + 6 z  - a  z  + z
     2                  4     2
    a                  a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 145]][a, z]
Out[14]=   
                                                       2      2
    2       2   z    4 z              3         2   4 z    2 z        2  2
5 + -- + 2 a  + -- - --- - 6 a z - 3 a  z - 16 z  + ---- - ---- - 10 a  z  - 
     2           5    a                               4      2
    a           a                                    a      a
 
       3    3       3                                  4      4
    3 z    z    10 z          3      3  3       4   7 z    2 z        2  4
>   ---- + -- + ----- + 15 a z  + 9 a  z  + 19 z  - ---- - ---- + 14 a  z  + 
      5     3     a                                   4      2
     a     a                                         a      a
 
     5      5      5                                6    6              7
    z    3 z    6 z         5      3  5      6   2 z    z       2  6   z
>   -- - ---- - ---- - 8 a z  - 6 a  z  - 8 z  + ---- + -- - 7 a  z  + -- + 
     5     3     a                                 4     2              3
    a     a                                       a     a              a
 
     7
    z       7    3  7    8    2  8
>   -- + a z  + a  z  + z  + a  z
    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 145]], Vassiliev[3][Knot[11, NonAlternating, 145]]}
Out[15]=   
{2, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 145]][q, t]
Out[16]=   
2           1       1       1       1       1      1      1      1    q
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + - + 
q          9  5    5  4    5  3    5  2    3  2      2    3     q t   t
          q  t    q  t    q  t    q  t    q  t    q t    q  t
 
             3      5      3  2      5  2    5  3    7  3    7  4    9  4
>   2 q t + q  t + q  t + q  t  + 2 q  t  + q  t  + q  t  + q  t  + q  t  + 
 
     11  5
>   q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n145
K11n144
K11n144
K11n146
K11n146