© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n120
K11n120
K11n122
K11n122
K11n121
Knotscape
This page is passe. Go here instead!

   The Knot K11n121

Visit K11n121's page at Knotilus!

Acknowledgement

K11n121 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,16,6,17 X7,12,8,13 X18,9,19,10 X2,11,3,12 X13,20,14,21 X15,6,16,7 X22,18,1,17 X8,19,9,20 X21,14,22,15

Gauss Code: {1, -6, 2, -1, -3, 8, -4, -10, 5, -2, 6, 4, -7, 11, -8, 3, 9, -5, 10, 7, -11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 -16 -12 18 2 -20 -6 22 8 -14

Alexander Polynomial: - t-3 + 6t-2 - 10t-1 + 11 - 10t + 6t2 - t3

Conway Polynomial: 1 + 5z2 - z6

Other knots with the same Alexander/Conway Polynomial: {K11n14, ...}

Determinant and Signature: {45, -4}

Jones Polynomial: - q-9 + 2q-8 - 5q-7 + 7q-6 - 7q-5 + 8q-4 - 6q-3 + 5q-2 - 3q-1 + 1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-28 - q-26 - 2q-22 + q-20 + q-16 + 3q-14 + 3q-10 - q-8 - q-2 + 1

HOMFLY-PT Polynomial: 2a2z2 + a2z4 + a4 - a4z2 - 3a4z4 - a4z6 + 2a6 + 5a6z2 + 2a6z4 - 2a8 - a8z2

Kauffman Polynomial: 2a2z2 - 3a2z4 + a2z6 + 7a3z3 - 10a3z5 + 3a3z7 + a4 - 3a4z2 + 6a4z4 - 9a4z6 + 3a4z8 + a5z + 3a5z3 - 8a5z5 + a5z7 + a5z9 - 2a6 - 2a6z2 + 9a6z4 - 11a6z6 + 4a6z8 + 6a7z - 10a7z3 + 6a7z5 - 2a7z7 + a7z9 - 2a8 + 2a8z2 + 2a8z4 - a8z6 + a8z8 + 4a9z - 5a9z3 + 4a9z5 - a10z2 + 2a10z4 - a11z + a11z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, -11}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 11121. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1         1
j = -1        2 
j = -3       31 
j = -5      43  
j = -7     42   
j = -9    34    
j = -11   44     
j = -13  13      
j = -15 14       
j = -17 1        
j = -191         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 121]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 121]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 16, 6, 17], X[7, 12, 8, 13], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[13, 20, 14, 21], X[15, 6, 16, 7], 
 
>   X[22, 18, 1, 17], X[8, 19, 9, 20], X[21, 14, 22, 15]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 121]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 8, -4, -10, 5, -2, 6, 4, -7, 11, -8, 3, 9, -5, 10, 
 
>   7, -11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 121]]
Out[5]=   
DTCode[4, 10, -16, -12, 18, 2, -20, -6, 22, 8, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 121]][t]
Out[6]=   
      -3   6    10             2    3
11 - t   + -- - -- - 10 t + 6 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 121]][z]
Out[7]=   
       2    6
1 + 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 14], Knot[11, NonAlternating, 121]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 121]], KnotSignature[Knot[11, NonAlternating, 121]]}
Out[9]=   
{45, -4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 121]][q]
Out[10]=   
     -9   2    5    7    7    8    6    5    3
1 - q   + -- - -- + -- - -- + -- - -- + -- - -
           8    7    6    5    4    3    2   q
          q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 121]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 121]][q]
Out[12]=   
     -28    -26    2     -20    -16    3     3     -8    -2
1 - q    - q    - --- + q    + q    + --- + --- - q   - q
                   22                  14    10
                  q                   q     q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 121]][a, z]
Out[13]=   
 4      6      8      2  2    4  2      6  2    8  2    2  4      4  4
a  + 2 a  - 2 a  + 2 a  z  - a  z  + 5 a  z  - a  z  + a  z  - 3 a  z  + 
 
       6  4    4  6
>   2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 121]][a, z]
Out[14]=   
 4      6      8    5        7        9      11        2  2      4  2
a  - 2 a  - 2 a  + a  z + 6 a  z + 4 a  z - a   z + 2 a  z  - 3 a  z  - 
 
       6  2      8  2    10  2      3  3      5  3       7  3      9  3
>   2 a  z  + 2 a  z  - a   z  + 7 a  z  + 3 a  z  - 10 a  z  - 5 a  z  + 
 
     11  3      2  4      4  4      6  4      8  4      10  4       3  5
>   a   z  - 3 a  z  + 6 a  z  + 9 a  z  + 2 a  z  + 2 a   z  - 10 a  z  - 
 
       5  5      7  5      9  5    2  6      4  6       6  6    8  6
>   8 a  z  + 6 a  z  + 4 a  z  + a  z  - 9 a  z  - 11 a  z  - a  z  + 
 
       3  7    5  7      7  7      4  8      6  8    8  8    5  9    7  9
>   3 a  z  + a  z  - 2 a  z  + 3 a  z  + 4 a  z  + a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 121]], Vassiliev[3][Knot[11, NonAlternating, 121]]}
Out[15]=   
{5, -11}
In[16]:=
Kh[Knot[11, NonAlternating, 121]][q, t]
Out[16]=   
3    3      1        1        1        4        1        3        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        3       4       4      2      4     t    2 t      2
>   ------ + ----- + ----- + ----- + ---- + ---- + -- + --- + q t
     11  3    9  3    9  2    7  2    7      5      3    q
    q   t    q  t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n121
K11n120
K11n120
K11n122
K11n122