© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n119
K11n119
K11n121
K11n121
K11n120
Knotscape
This page is passe. Go here instead!

   The Knot K11n120

Visit K11n120's page at Knotilus!

Acknowledgement

K11n120 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X5,15,6,14 X7,20,8,21 X2,10,3,9 X11,17,12,16 X13,18,14,19 X15,9,16,8 X17,1,18,22 X19,6,20,7 X21,12,22,13

Gauss Code: {1, -5, 2, -1, -3, 10, -4, 8, 5, -2, -6, 11, -7, 3, -8, 6, -9, 7, -10, 4, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 -20 2 -16 -18 -8 -22 -6 -12

Alexander Polynomial: - t-4 + 4t-3 - 7t-2 + 8t-1 - 7 + 8t - 7t2 + 4t3 - t4

Conway Polynomial: 1 - 3z4 - 4z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {47, 2}

Jones Polynomial: q-3 - 3q-2 + 5q-1 - 6 + 8q - 8q2 + 7q3 - 5q4 + 3q5 - q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - q-6 + q-4 + 1 + q2 - 2q4 + 2q6 - 2q8 + 2q10 + q16 - q18 + q20 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 3a-4 + 7a-4z2 + 5a-4z4 + a-4z6 - 3a-2 - 10a-2z2 - 12a-2z4 - 6a-2z6 - a-2z8 + 2 + 4z2 + 4z4 + z6

Kauffman Polynomial: - a-7z + a-7z3 + a-6 - 4a-6z2 + 3a-6z4 - 2a-5z + 3a-5z3 - a-5z5 + a-5z7 + 3a-4 - 16a-4z2 + 25a-4z4 - 13a-4z6 + 3a-4z8 - 2a-3z + 3a-3z3 + 5a-3z5 - 6a-3z7 + 2a-3z9 + 3a-2 - 20a-2z2 + 40a-2z4 - 29a-2z6 + 7a-2z8 - 2a-1z + 7a-1z3 - 4a-1z5 - 4a-1z7 + 2a-1z9 + 2 - 7z2 + 15z4 - 15z6 + 4z8 - az + 6az3 - 10az5 + 3az7 + a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11120. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13         1
j = 11        2 
j = 9       31 
j = 7      42  
j = 5     43   
j = 3    44    
j = 1   35     
j = -1  23      
j = -3 13       
j = -5 2        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 120]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 120]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 15, 6, 14], X[7, 20, 8, 21], 
 
>   X[2, 10, 3, 9], X[11, 17, 12, 16], X[13, 18, 14, 19], X[15, 9, 16, 8], 
 
>   X[17, 1, 18, 22], X[19, 6, 20, 7], X[21, 12, 22, 13]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 120]]
Out[4]=   
GaussCode[1, -5, 2, -1, -3, 10, -4, 8, 5, -2, -6, 11, -7, 3, -8, 6, -9, 7, -10, 
 
>   4, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 120]]
Out[5]=   
DTCode[4, 10, -14, -20, 2, -16, -18, -8, -22, -6, -12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 120]][t]
Out[6]=   
      -4   4    7    8            2      3    4
-7 - t   + -- - -- + - + 8 t - 7 t  + 4 t  - t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, NonAlternating, 120]][z]
Out[7]=   
       4      6    8
1 - 3 z  - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 120]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 120]], KnotSignature[Knot[11, NonAlternating, 120]]}
Out[9]=   
{47, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 120]][q]
Out[10]=   
      -3   3    5            2      3      4      5    6
-6 + q   - -- + - + 8 q - 8 q  + 7 q  - 5 q  + 3 q  - q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 120]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 120]][q]
Out[12]=   
     -8    -6    -4    2      4      6      8      10    16    18    20    22
1 + q   - q   + q   + q  - 2 q  + 2 q  - 2 q  + 2 q   + q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 120]][a, z]
Out[13]=   
                            2      2       2             4       4         6
     -6   3    3       2   z    7 z    10 z       4   5 z    12 z     6   z
2 - a   + -- - -- + 4 z  - -- + ---- - ----- + 4 z  + ---- - ----- + z  + -- - 
           4    2           6     4      2              4      2           4
          a    a           a     a      a              a      a           a
 
       6    8
    6 z    z
>   ---- - --
      2     2
     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 120]][a, z]
Out[14]=   
                                                           2       2       2
     -6   3    3    z    2 z   2 z   2 z            2   4 z    16 z    20 z
2 + a   + -- + -- - -- - --- - --- - --- - a z - 7 z  - ---- - ----- - ----- + 
           4    2    7    5     3     a                   6      4       2
          a    a    a    a     a                         a      a       a
 
             3      3      3      3                       4       4       4
     2  2   z    3 z    3 z    7 z         3       4   3 z    25 z    40 z
>   a  z  + -- + ---- + ---- + ---- + 6 a z  + 15 z  + ---- + ----- + ----- - 
             7     5      3     a                        6      4       2
            a     a      a                              a      a       a
 
               5      5      5                         6       6            7
       2  4   z    5 z    4 z          5       6   13 z    29 z     2  6   z
>   3 a  z  - -- + ---- - ---- - 10 a z  - 15 z  - ----- - ----- + a  z  + -- - 
               5     3     a                         4       2              5
              a     a                               a       a              a
 
       7      7                      8      8      9      9
    6 z    4 z         7      8   3 z    7 z    2 z    2 z
>   ---- - ---- + 3 a z  + 4 z  + ---- + ---- + ---- + ----
      3     a                       4      2      3     a
     a                             a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 120]], Vassiliev[3][Knot[11, NonAlternating, 120]]}
Out[15]=   
{0, 1}
In[16]:=
Kh[Knot[11, NonAlternating, 120]][q, t]
Out[16]=   
         3     1       2       1       3      2      3    3 q      3
5 q + 4 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 4 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3    9  4      11  4    13  5
>   4 q  t + 3 q  t  + 4 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n120
K11n119
K11n119
K11n121
K11n121