© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n121
K11n121
K11n123
K11n123
K11n122
Knotscape
This page is passe. Go here instead!

   The Knot K11n122

Visit K11n122's page at Knotilus!

Acknowledgement

K11n122 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,16,6,17 X7,12,8,13 X9,19,10,18 X2,11,3,12 X13,20,14,21 X15,6,16,7 X17,22,18,1 X19,9,20,8 X21,14,22,15

Gauss Code: {1, -6, 2, -1, -3, 8, -4, 10, -5, -2, 6, 4, -7, 11, -8, 3, -9, 5, -10, 7, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 -16 -12 -18 2 -20 -6 -22 -8 -14

Alexander Polynomial: - 2t-2 + 7t-1 - 9 + 7t - 2t2

Conway Polynomial: 1 - z2 - 2z4

Other knots with the same Alexander/Conway Polynomial: {811, 10147, ...}

Determinant and Signature: {27, -2}

Jones Polynomial: q-9 - 2q-8 + 3q-7 - 4q-6 + 4q-5 - 5q-4 + 4q-3 - 2q-2 + 2q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 + q-22 - q-20 - q-16 - 2q-14 - q-12 - q-10 + 2q-8 + 2q-6 + q-4 + 2q-2

HOMFLY-PT Polynomial: 3a2 + 2a2z2 - 2a4 - 2a4z2 - a4z4 - a6 - 2a6z2 - a6z4 + a8 + a8z2

Kauffman Polynomial: - 3a2 + 2a2z2 + 3a3z - 2a3z3 + a3z5 - 2a4 - 2a4z2 + 9a4z4 - 5a4z6 + a4z8 + 5a5z - 9a5z3 + 10a5z5 - 5a5z7 + a5z9 + a6 - 11a6z2 + 21a6z4 - 14a6z6 + 3a6z8 + a7z5 - 3a7z7 + a7z9 + a8 - 4a8z2 + 8a8z4 - 8a8z6 + 2a8z8 - 2a9z + 7a9z3 - 8a9z5 + 2a9z7 + 3a10z2 - 4a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11122. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1        2
j = -3       11
j = -5      31 
j = -7     21  
j = -9    23   
j = -11   22    
j = -13  12     
j = -15 12      
j = -17 1       
j = -191        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 122]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 122]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 16, 6, 17], X[7, 12, 8, 13], 
 
>   X[9, 19, 10, 18], X[2, 11, 3, 12], X[13, 20, 14, 21], X[15, 6, 16, 7], 
 
>   X[17, 22, 18, 1], X[19, 9, 20, 8], X[21, 14, 22, 15]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 122]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 8, -4, 10, -5, -2, 6, 4, -7, 11, -8, 3, -9, 5, -10, 
 
>   7, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 122]]
Out[5]=   
DTCode[4, 10, -16, -12, -18, 2, -20, -6, -22, -8, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 122]][t]
Out[6]=   
     2    7            2
-9 - -- + - + 7 t - 2 t
      2   t
     t
In[7]:=
Conway[Knot[11, NonAlternating, 122]][z]
Out[7]=   
     2      4
1 - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 11], Knot[10, 147], Knot[11, NonAlternating, 122]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 122]], KnotSignature[Knot[11, NonAlternating, 122]]}
Out[9]=   
{27, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 122]][q]
Out[10]=   
 -9   2    3    4    4    5    4    2    2
q   - -- + -- - -- + -- - -- + -- - -- + -
       8    7    6    5    4    3    2   q
      q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 122]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 122]][q]
Out[12]=   
 -28    -22    -20    -16    2     -12    -10   2    2     -4   2
q    + q    - q    - q    - --- - q    - q    + -- + -- + q   + --
                             14                  8    6          2
                            q                   q    q          q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 122]][a, z]
Out[13]=   
   2      4    6    8      2  2      4  2      6  2    8  2    4  4    6  4
3 a  - 2 a  - a  + a  + 2 a  z  - 2 a  z  - 2 a  z  + a  z  - a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 122]][a, z]
Out[14]=   
    2      4    6    8      3        5        9        2  2      4  2
-3 a  - 2 a  + a  + a  + 3 a  z + 5 a  z - 2 a  z + 2 a  z  - 2 a  z  - 
 
        6  2      8  2      10  2      3  3      5  3      9  3      4  4
>   11 a  z  - 4 a  z  + 3 a   z  - 2 a  z  - 9 a  z  + 7 a  z  + 9 a  z  + 
 
        6  4      8  4      10  4    3  5       5  5    7  5      9  5
>   21 a  z  + 8 a  z  - 4 a   z  + a  z  + 10 a  z  + a  z  - 8 a  z  - 
 
       4  6       6  6      8  6    10  6      5  7      7  7      9  7
>   5 a  z  - 14 a  z  - 8 a  z  + a   z  - 5 a  z  - 3 a  z  + 2 a  z  + 
 
     4  8      6  8      8  8    5  9    7  9
>   a  z  + 3 a  z  + 2 a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 122]], Vassiliev[3][Knot[11, NonAlternating, 122]]}
Out[15]=   
{-1, 4}
In[16]:=
Kh[Knot[11, NonAlternating, 122]][q, t]
Out[16]=   
 -3   2     1        1        1        2        1        2        2
q   + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
      q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
          q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        2       3       2       1       3      1      1
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ----
     11  4    9  4    9  3    7  3    7  2    5  2    5      3
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n122
K11n121
K11n121
K11n123
K11n123