© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a367
K11a367
K11n2
K11n2
K11n1
Knotscape
This page is passe. Go here instead!

   The Knot K11n1

Visit K11n1's page at Knotilus!

Acknowledgement

K11n1 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X14,7,15,8 X2,9,3,10 X11,16,12,17 X13,20,14,21 X6,15,7,16 X17,22,18,1 X19,12,20,13 X21,18,22,19

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -2, 5, -3, -6, 10, -7, -4, 8, 6, -9, 11, -10, 7, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 14 2 -16 -20 6 -22 -12 -18

Alexander Polynomial: - t-2 + 7t-1 - 11 + 7t - t2

Conway Polynomial: 1 + 3z2 - z4

Other knots with the same Alexander/Conway Polynomial: {948, ...}

Determinant and Signature: {27, -2}

Jones Polynomial: - q-10 + 2q-9 - 3q-8 + 4q-7 - 4q-6 + 4q-5 - 4q-4 + 3q-3 - q-2 + q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-32 - q-30 + q-28 + q-24 + q-22 - q-20 - q-16 + 2q-8 + q-6 + q-2

HOMFLY-PT Polynomial: a2 + a2z2 + a4 + 2a4z2 - 2a6 - 2a6z2 - a6z4 + 2a8 + 2a8z2 - a10

Kauffman Polynomial: - a2 + a2z2 + a3z3 + a4 - 3a4z2 + 2a4z4 - a5z + 3a5z3 - 3a5z5 + a5z7 + 2a6 - 9a6z2 + 13a6z4 - 9a6z6 + 2a6z8 - 2a7z + 8a7z3 - 5a7z5 - 2a7z7 + a7z9 + 2a8 - 12a8z2 + 25a8z4 - 19a8z6 + 4a8z8 - 4a9z + 13a9z3 - 7a9z5 - 2a9z7 + a9z9 + a10 - 7a10z2 + 14a10z4 - 10a10z6 + 2a10z8 - 3a11z + 7a11z3 - 5a11z5 + a11z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -7}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 111. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1         1
j = -3        11
j = -5       2  
j = -7      21  
j = -9     22   
j = -11    22    
j = -13   22     
j = -15  12      
j = -17 12       
j = -19 1        
j = -211         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 1]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 1]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 7, 15, 8], 
 
>   X[2, 9, 3, 10], X[11, 16, 12, 17], X[13, 20, 14, 21], X[6, 15, 7, 16], 
 
>   X[17, 22, 18, 1], X[19, 12, 20, 13], X[21, 18, 22, 19]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 1]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -3, -6, 10, -7, -4, 8, 6, -9, 11, -10, 
 
>   7, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 1]]
Out[5]=   
DTCode[4, 8, 10, 14, 2, -16, -20, 6, -22, -12, -18]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 1]][t]
Out[6]=   
       -2   7          2
-11 - t   + - + 7 t - t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 1]][z]
Out[7]=   
       2    4
1 + 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[9, 48], Knot[11, NonAlternating, 1]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 1]], KnotSignature[Knot[11, NonAlternating, 1]]}
Out[9]=   
{27, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 1]][q]
Out[10]=   
  -10   2    3    4    4    4    4    3     -2   1
-q    + -- - -- + -- - -- + -- - -- + -- - q   + -
         9    8    7    6    5    4    3         q
        q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 1]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 1]][q]
Out[12]=   
  -32    -30    -28    -24    -22    -20    -16   2     -6    -2
-q    - q    + q    + q    + q    - q    - q    + -- + q   + q
                                                   8
                                                  q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 1]][a, z]
Out[13]=   
 2    4      6      8    10    2  2      4  2      6  2      8  2    6  4
a  + a  - 2 a  + 2 a  - a   + a  z  + 2 a  z  - 2 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 1]][a, z]
Out[14]=   
  2    4      6      8    10    5        7        9        11      2  2
-a  + a  + 2 a  + 2 a  + a   - a  z - 2 a  z - 4 a  z - 3 a   z + a  z  - 
 
       4  2      6  2       8  2      10  2    3  3      5  3      7  3
>   3 a  z  - 9 a  z  - 12 a  z  - 7 a   z  + a  z  + 3 a  z  + 8 a  z  + 
 
        9  3      11  3      4  4       6  4       8  4       10  4      5  5
>   13 a  z  + 7 a   z  + 2 a  z  + 13 a  z  + 25 a  z  + 14 a   z  - 3 a  z  - 
 
       7  5      9  5      11  5      6  6       8  6       10  6    5  7
>   5 a  z  - 7 a  z  - 5 a   z  - 9 a  z  - 19 a  z  - 10 a   z  + a  z  - 
 
       7  7      9  7    11  7      6  8      8  8      10  8    7  9    9  9
>   2 a  z  - 2 a  z  + a   z  + 2 a  z  + 4 a  z  + 2 a   z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 1]], Vassiliev[3][Knot[11, NonAlternating, 1]]}
Out[15]=   
{3, -7}
In[16]:=
Kh[Knot[11, NonAlternating, 1]][q, t]
Out[16]=   
 -3   1     1        1        1        2        1        2        2
q   + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
      q    21  9    19  8    17  8    17  7    15  7    15  6    13  6
          q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        2        2        2       2       2       1       2      1
>   ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----
     13  5    11  5    11  4    9  4    9  3    7  3    7  2    5  2    3
    q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n1
K11a367
K11a367
K11n2
K11n2