© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n1
K11n1
K11n3
K11n3
K11n2
Knotscape
This page is passe. Go here instead!

   The Knot K11n2

Visit K11n2's page at Knotilus!

Acknowledgement

K11n2 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X7,15,8,14 X2,9,3,10 X16,12,17,11 X20,14,21,13 X15,7,16,6 X22,18,1,17 X12,20,13,19 X18,22,19,21

Gauss Code: {1, -5, 2, -1, 3, 8, -4, -2, 5, -3, 6, -10, 7, 4, -8, -6, 9, -11, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 -14 2 16 20 -6 22 12 18

Alexander Polynomial: - 2t-3 + 8t-2 - 12t-1 + 13 - 12t + 8t2 - 2t3

Conway Polynomial: 1 + 2z2 - 4z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1014, K11a161, ...}

Determinant and Signature: {57, 4}

Jones Polynomial: 1 - 2q + 5q2 - 7q3 + 9q4 - 10q5 + 9q6 - 7q7 + 5q8 - 2q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 + q4 + 2q6 - q8 + 2q10 - 2q12 - 2q18 + 2q20 - q22 + 2q24 + q26 - q28 - q32

HOMFLY-PT Polynomial: - a-10 + 2a-8 + 3a-8z2 + a-8z4 - a-6 - 2a-6z2 - 3a-6z4 - a-6z6 - a-4 - 2a-4z2 - 3a-4z4 - a-4z6 + 2a-2 + 3a-2z2 + a-2z4

Kauffman Polynomial: - 2a-11z + 3a-11z3 + a-10 - 5a-10z2 + 4a-10z4 + a-10z6 - 2a-9z + 6a-9z3 - 4a-9z5 + 3a-9z7 + 2a-8 - 10a-8z2 + 12a-8z4 - 6a-8z6 + 3a-8z8 + 3a-7z3 - 7a-7z5 + 3a-7z7 + a-7z9 + a-6 - 5a-6z2 + 8a-6z4 - 11a-6z6 + 5a-6z8 + 4a-5z3 - 9a-5z5 + 2a-5z7 + a-5z9 - a-4 + 5a-4z2 - 4a-4z4 - 3a-4z6 + 2a-4z8 + 4a-3z3 - 6a-3z5 + 2a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 19         2
j = 17        3 
j = 15       42 
j = 13      53  
j = 11     54   
j = 9    45    
j = 7   35     
j = 5  24      
j = 3 14       
j = 1 1        
j = -11         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 2]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 2]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[7, 15, 8, 14], 
 
>   X[2, 9, 3, 10], X[16, 12, 17, 11], X[20, 14, 21, 13], X[15, 7, 16, 6], 
 
>   X[22, 18, 1, 17], X[12, 20, 13, 19], X[18, 22, 19, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 2]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, 8, -4, -2, 5, -3, 6, -10, 7, 4, -8, -6, 9, -11, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 2]]
Out[5]=   
DTCode[4, 8, 10, -14, 2, 16, 20, -6, 22, 12, 18]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 2]][t]
Out[6]=   
     2    8    12             2      3
13 - -- + -- - -- - 12 t + 8 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, NonAlternating, 2]][z]
Out[7]=   
       2      4      6
1 + 2 z  - 4 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 14], Knot[11, Alternating, 161], Knot[11, NonAlternating, 2]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 2]], KnotSignature[Knot[11, NonAlternating, 2]]}
Out[9]=   
{57, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 2]][q]
Out[10]=   
             2      3      4       5      6      7      8      9
1 - 2 q + 5 q  - 7 q  + 9 q  - 10 q  + 9 q  - 7 q  + 5 q  - 2 q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 2]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 2]][q]
Out[12]=   
     4      6    8      10      12      18      20    22      24    26    28
1 + q  + 2 q  - q  + 2 q   - 2 q   - 2 q   + 2 q   - q   + 2 q   + q   - q   - 
 
     32
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 2]][a, z]
Out[13]=   
                                 2      2      2      2    4      4      4
  -10   2     -6    -4   2    3 z    2 z    2 z    3 z    z    3 z    3 z
-a    + -- - a   - a   + -- + ---- - ---- - ---- + ---- + -- - ---- - ---- + 
         8                2     8      6      4      2     8     6      4
        a                a     a      a      a      a     a     a      a
 
     4    6    6
    z    z    z
>   -- - -- - --
     2    6    4
    a    a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 2]][a, z]
Out[14]=   
                                            2       2      2      2      2
 -10   2     -6    -4   2    2 z   2 z   5 z    10 z    5 z    5 z    5 z
a    + -- + a   - a   - -- - --- - --- - ---- - ----- - ---- + ---- + ---- + 
        8                2    11    9     10      8       6      4      2
       a                a    a     a     a       a       a      a      a
 
       3      3      3      3      3      4       4      4      4      4
    3 z    6 z    3 z    4 z    4 z    4 z    12 z    8 z    4 z    4 z
>   ---- + ---- + ---- + ---- + ---- + ---- + ----- + ---- - ---- - ---- - 
     11      9      7      5      3     10      8       6      4      2
    a       a      a      a      a     a       a       a      a      a
 
       5      5      5      5    6       6       6      6    6      7      7
    4 z    7 z    9 z    6 z    z     6 z    11 z    3 z    z    3 z    3 z
>   ---- - ---- - ---- - ---- + --- - ---- - ----- - ---- + -- + ---- + ---- + 
      9      7      5      3     10     8      6       4     2     9      7
     a      a      a      a     a      a      a       a     a     a      a
 
       7      7      8      8      8    9    9
    2 z    2 z    3 z    5 z    2 z    z    z
>   ---- + ---- + ---- + ---- + ---- + -- + --
      5      3      8      6      4     7    5
     a      a      a      a      a     a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 2]], Vassiliev[3][Knot[11, NonAlternating, 2]]}
Out[15]=   
{2, 5}
In[16]:=
Kh[Knot[11, NonAlternating, 2]][q, t]
Out[16]=   
                          3
   3      5    1     q   q       5        7        7  2      9  2      9  3
4 q  + 2 q  + ---- + - + -- + 4 q  t + 3 q  t + 5 q  t  + 4 q  t  + 5 q  t  + 
                 2   t   t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   5 q   t  + 4 q   t  + 5 q   t  + 3 q   t  + 4 q   t  + 2 q   t  + 
 
       17  6      19  7
>   3 q   t  + 2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n2
K11n1
K11n1
K11n3
K11n3