© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a366
K11a366
K11n1
K11n1
K11a367
Knotscape
This page is passe. Go here instead!

   The Knot K11a367

Visit K11a367's page at Knotilus!

Acknowledgement

K11a367 as Morse Link
DrawMorseLink

PD Presentation: X12,2,13,1 X14,4,15,3 X16,6,17,5 X18,8,19,7 X20,10,21,9 X22,12,1,11 X2,14,3,13 X4,16,5,15 X6,18,7,17 X8,20,9,19 X10,22,11,21

Gauss Code: {1, -7, 2, -8, 3, -9, 4, -10, 5, -11, 6, -1, 7, -2, 8, -3, 9, -4, 10, -5, 11, -6}

DT (Dowker-Thistlethwaite) Code: 12 14 16 18 20 22 2 4 6 8 10

Alexander Polynomial: t-5 - t-4 + t-3 - t-2 + t-1 - 1 + t - t2 + t3 - t4 + t5

Conway Polynomial: 1 + 15z2 + 35z4 + 28z6 + 9z8 + z10

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {11, 10}

Jones Polynomial: q5 + q7 - q8 + q9 - q10 + q11 - q12 + q13 - q14 + q15 - q16

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q18 + q20 + 2q22 + q24 + q26 - q42 - q44 - q46

HOMFLY-PT Polynomial: - 5a-12 - 20a-12z2 - 21a-12z4 - 8a-12z6 - a-12z8 + 6a-10 + 35a-10z2 + 56a-10z4 + 36a-10z6 + 10a-10z8 + a-10z10

Kauffman Polynomial: a-21z + a-20z2 - a-19z + a-19z3 - 2a-18z2 + a-18z4 + a-17z - 3a-17z3 + a-17z5 + 3a-16z2 - 4a-16z4 + a-16z6 - a-15z + 6a-15z3 - 5a-15z5 + a-15z7 - 4a-14z2 + 10a-14z4 - 6a-14z6 + a-14z8 + a-13z - 10a-13z3 + 15a-13z5 - 7a-13z7 + a-13z9 - 5a-12 + 25a-12z2 - 41a-12z4 + 29a-12z6 - 9a-12z8 + a-12z10 + 5a-11z - 20a-11z3 + 21a-11z5 - 8a-11z7 + a-11z9 - 6a-10 + 35a-10z2 - 56a-10z4 + 36a-10z6 - 10a-10z8 + a-10z10

V2 and V3, the type 2 and 3 Vassiliev invariants: {15, 55}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=10 is the signature of 11367. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 33           1
j = 31            
j = 29         11 
j = 27            
j = 25       11   
j = 23            
j = 21     11     
j = 19            
j = 17   11       
j = 15            
j = 13  1         
j = 111           
j = 91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 367]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 367]]
Out[3]=   
PD[X[12, 2, 13, 1], X[14, 4, 15, 3], X[16, 6, 17, 5], X[18, 8, 19, 7], 
 
>   X[20, 10, 21, 9], X[22, 12, 1, 11], X[2, 14, 3, 13], X[4, 16, 5, 15], 
 
>   X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 367]]
Out[4]=   
GaussCode[1, -7, 2, -8, 3, -9, 4, -10, 5, -11, 6, -1, 7, -2, 8, -3, 9, -4, 10, 
 
>   -5, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 367]]
Out[5]=   
DTCode[12, 14, 16, 18, 20, 22, 2, 4, 6, 8, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 367]][t]
Out[6]=   
      -5    -4    -3    -2   1        2    3    4    5
-1 + t   - t   + t   - t   + - + t - t  + t  - t  + t
                             t
In[7]:=
Conway[Knot[11, Alternating, 367]][z]
Out[7]=   
        2       4       6      8    10
1 + 15 z  + 35 z  + 28 z  + 9 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 367]}
In[9]:=
{KnotDet[Knot[11, Alternating, 367]], KnotSignature[Knot[11, Alternating, 367]]}
Out[9]=   
{11, 10}
In[10]:=
J=Jones[Knot[11, Alternating, 367]][q]
Out[10]=   
 5    7    8    9    10    11    12    13    14    15    16
q  + q  - q  + q  - q   + q   - q   + q   - q   + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 367]}
In[12]:=
A2Invariant[Knot[11, Alternating, 367]][q]
Out[12]=   
 18    20      22    24    26    42    44    46
q   + q   + 2 q   + q   + q   - q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 367]][a, z]
Out[13]=   
                2       2       4       4      6       6    8        8    10
-5     6    20 z    35 z    21 z    56 z    8 z    36 z    z     10 z    z
--- + --- - ----- + ----- - ----- + ----- - ---- + ----- - --- + ----- + ---
 12    10     12      10      12      10     12      10     12     10     10
a     a      a       a       a       a      a       a      a      a      a
In[14]:=
Kauffman[Knot[11, Alternating, 367]][a, z]
Out[14]=   
                                                 2       2      2      2
-5     6     z     z     z     z     z    5 z   z     2 z    3 z    4 z
--- - --- + --- - --- + --- - --- + --- + --- + --- - ---- + ---- - ---- + 
 12    10    21    19    17    15    13    11    20    18     16     14
a     a     a     a     a     a     a     a     a     a      a      a
 
        2       2    3       3      3       3       3    4       4       4
    25 z    35 z    z     3 z    6 z    10 z    20 z    z     4 z    10 z
>   ----- + ----- + --- - ---- + ---- - ----- - ----- + --- - ---- + ----- - 
      12      10     19    17     15      13      11     18    16      14
     a       a      a     a      a       a       a      a     a       a
 
        4       4    5       5       5       5    6       6       6       6
    41 z    56 z    z     5 z    15 z    21 z    z     6 z    29 z    36 z
>   ----- - ----- + --- - ---- + ----- + ----- + --- - ---- + ----- + ----- + 
      12      10     17    15      13      11     16    14      12      10
     a       a      a     a       a       a      a     a       a       a
 
     7       7      7    8       8       8    9     9     10    10
    z     7 z    8 z    z     9 z    10 z    z     z     z     z
>   --- - ---- - ---- + --- - ---- - ----- + --- + --- + --- + ---
     15    13     11     14    12      10     13    11    12    10
    a     a      a      a     a       a      a     a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 367]], Vassiliev[3][Knot[11, Alternating, 367]]}
Out[15]=   
{15, 55}
In[16]:=
Kh[Knot[11, Alternating, 367]][q, t]
Out[16]=   
 9    11    13  2    17  3    17  4    21  5    21  6    25  7    25  8
q  + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     29  9    29  10    33  11
>   q   t  + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a367
K11a366
K11a366
K11n1
K11n1