© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a81
K11a81
K11a83
K11a83
K11a82
Knotscape
This page is passe. Go here instead!

   The Knot K11a82

Visit K11a82's page at Knotilus!

Acknowledgement

K11a82 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X12,5,13,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X18,13,19,14 X20,15,21,16 X6,18,7,17 X14,19,15,20 X8,21,9,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -11, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, -8, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 12 16 2 22 18 20 6 14 8

Alexander Polynomial: - t-4 + 5t-3 - 12t-2 + 19t-1 - 21 + 19t - 12t2 + 5t3 - t4

Conway Polynomial: 1 - 2z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {10116, K11a7, K11a33, ...}

Determinant and Signature: {95, -2}

Jones Polynomial: q-7 - 3q-6 + 6q-5 - 10q-4 + 13q-3 - 15q-2 + 15q-1 - 12 + 10q - 6q2 + 3q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11a33, ...}

A2 (sl(3)) Invariant: q-20 - q-18 + 2q-16 - q-14 - q-12 + q-10 - 4q-8 + 2q-6 - 2q-4 + 2q-2 + 3 + 3q4 - q6 - q12

HOMFLY-PT Polynomial: - 2a-2 - 3a-2z2 - a-2z4 + 7 + 13z2 + 9z4 + 2z6 - 6a2 - 15a2z2 - 14a2z4 - 6a2z6 - a2z8 + 2a4 + 5a4z2 + 4a4z4 + a4z6

Kauffman Polynomial: - 2a-3z + 5a-3z3 - 4a-3z5 + a-3z7 + 2a-2 - 8a-2z2 + 15a-2z4 - 12a-2z6 + 3a-2z8 - 6a-1z + 13a-1z3 - 4a-1z5 - 7a-1z7 + 3a-1z9 + 7 - 26z2 + 46z4 - 36z6 + 7z8 + z10 - 10az + 22az3 - 6az5 - 15az7 + 7az9 + 6a2 - 27a2z2 + 51a2z4 - 43a2z6 + 11a2z8 + a2z10 - 10a3z + 28a3z3 - 21a3z5 + 4a3z9 + 2a4 - 7a4z2 + 14a4z4 - 14a4z6 + 7a4z8 - 4a5z + 11a5z3 - 12a5z5 + 7a5z7 + a6z2 - 5a6z4 + 5a6z6 - 3a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1182. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          2 
j = 5         41 
j = 3        62  
j = 1       64   
j = -1      96    
j = -3     77     
j = -5    68      
j = -7   47       
j = -9  26        
j = -11 14         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 82]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 82]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 5, 13, 6], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[18, 13, 19, 14], X[20, 15, 21, 16], 
 
>   X[6, 18, 7, 17], X[14, 19, 15, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 82]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -11, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, 
 
>   -8, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 82]]
Out[5]=   
DTCode[4, 10, 12, 16, 2, 22, 18, 20, 6, 14, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 82]][t]
Out[6]=   
       -4   5    12   19              2      3    4
-21 - t   + -- - -- + -- + 19 t - 12 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 82]][z]
Out[7]=   
       4      6    8
1 - 2 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33], 
 
>   Knot[11, Alternating, 82]}
In[9]:=
{KnotDet[Knot[11, Alternating, 82]], KnotSignature[Knot[11, Alternating, 82]]}
Out[9]=   
{95, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 82]][q]
Out[10]=   
       -7   3    6    10   13   15   15             2      3    4
-12 + q   - -- + -- - -- + -- - -- + -- + 10 q - 6 q  + 3 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 33], Knot[11, Alternating, 82]}
In[12]:=
A2Invariant[Knot[11, Alternating, 82]][q]
Out[12]=   
     -20    -18    2     -14    -12    -10   4    2    2    2       4    6    12
3 + q    - q    + --- - q    - q    + q    - -- + -- - -- + -- + 3 q  - q  - q
                   16                         8    6    4    2
                  q                          q    q    q    q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 82]][a, z]
Out[13]=   
                                  2                                4
    2       2      4       2   3 z        2  2      4  2      4   z
7 - -- - 6 a  + 2 a  + 13 z  - ---- - 15 a  z  + 5 a  z  + 9 z  - -- - 
     2                           2                                 2
    a                           a                                 a
 
        2  4      4  4      6      2  6    4  6    2  8
>   14 a  z  + 4 a  z  + 2 z  - 6 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 82]][a, z]
Out[14]=   
                                                                          2
    2       2      4   2 z   6 z                3        5         2   8 z
7 + -- + 6 a  + 2 a  - --- - --- - 10 a z - 10 a  z - 4 a  z - 26 z  - ---- - 
     2                  3     a                                          2
    a                  a                                                a
 
                                            3       3
        2  2      4  2    6  2    8  2   5 z    13 z          3       3  3
>   27 a  z  - 7 a  z  + a  z  - a  z  + ---- + ----- + 22 a z  + 28 a  z  + 
                                           3      a
                                          a
 
                                     4
        5  3      7  3       4   15 z        2  4       4  4      6  4
>   11 a  z  - 3 a  z  + 46 z  + ----- + 51 a  z  + 14 a  z  - 5 a  z  + 
                                   2
                                  a
 
               5      5
     8  4   4 z    4 z         5       3  5       5  5      7  5       6
>   a  z  - ---- - ---- - 6 a z  - 21 a  z  - 12 a  z  + 3 a  z  - 36 z  - 
              3     a
             a
 
        6                                    7      7
    12 z        2  6       4  6      6  6   z    7 z          7      5  7
>   ----- - 43 a  z  - 14 a  z  + 5 a  z  + -- - ---- - 15 a z  + 7 a  z  + 
      2                                      3    a
     a                                      a
 
              8                           9
       8   3 z        2  8      4  8   3 z         9      3  9    10    2  10
>   7 z  + ---- + 11 a  z  + 7 a  z  + ---- + 7 a z  + 4 a  z  + z   + a  z
             2                          a
            a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 82]], Vassiliev[3][Knot[11, Alternating, 82]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, Alternating, 82]][q, t]
Out[16]=   
7    9     1        2        1        4        2       6       4       7
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      6      8      7     6 t                2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 6 q t + 4 q t  + 6 q  t  + 2 q  t  + 4 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a82
K11a81
K11a81
K11a83
K11a83