© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a80
K11a80
K11a82
K11a82
K11a81
Knotscape
This page is passe. Go here instead!

   The Knot K11a81

Visit K11a81's page at Knotilus!

Acknowledgement

K11a81 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X22,10,1,9 X2,11,3,12 X18,13,19,14 X20,16,21,15 X8,17,9,18 X6,20,7,19 X16,22,17,21

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 10 12 14 22 2 18 20 8 6 16

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 26t-1 - 29 + 26t - 16t2 + 6t3 - t4

Conway Polynomial: 1 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a282, ...}

Determinant and Signature: {127, 2}

Jones Polynomial: - q-4 + 4q-3 - 8q-2 + 13q-1 - 17 + 20q - 20q2 + 18q3 - 13q4 + 8q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11a282, ...}

A2 (sl(3)) Invariant: - q-12 + q-10 + q-8 - q-6 + 3q-4 - 3q-2 + 1 + q2 - 2q4 + 5q6 - 3q8 + 3q10 - q12 - 2q14 + 2q16 - 2q18 + q20

HOMFLY-PT Polynomial: 2a-4z2 + 3a-4z4 + a-4z6 - 6a-2z2 - 9a-2z4 - 5a-2z6 - a-2z8 + 1 + 6z2 + 7z4 + 2z6 - 2a2z2 - a2z4

Kauffman Polynomial: a-8z4 - 2a-7z3 + 4a-7z5 + 2a-6z2 - 7a-6z4 + 8a-6z6 - a-5z + 5a-5z3 - 13a-5z5 + 11a-5z7 + a-4z2 + 2a-4z4 - 14a-4z6 + 11a-4z8 - 4a-3z + 19a-3z3 - 23a-3z5 - a-3z7 + 7a-3z9 - 9a-2z2 + 39a-2z4 - 50a-2z6 + 15a-2z8 + 2a-2z10 - 6a-1z + 18a-1z3 - 26a-1z7 + 12a-1z9 + 1 - 13z2 + 44z4 - 42z6 + 8z8 + 2z10 - 4az + 9az3 + 3az5 - 13az7 + 5az9 - 5a2z2 + 15a2z4 - 14a2z6 + 4a2z8 - a3z + 3a3z3 - 3a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1181. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         51 
j = 9        83  
j = 7       105   
j = 5      108    
j = 3     1010     
j = 1    811      
j = -1   59       
j = -3  38        
j = -5 15         
j = -7 3          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 81]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 81]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 7, 15, 8], 
 
>   X[22, 10, 1, 9], X[2, 11, 3, 12], X[18, 13, 19, 14], X[20, 16, 21, 15], 
 
>   X[8, 17, 9, 18], X[6, 20, 7, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 81]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, 
 
>   -8, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 81]]
Out[5]=   
DTCode[4, 10, 12, 14, 22, 2, 18, 20, 8, 6, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 81]][t]
Out[6]=   
       -4   6    16   26              2      3    4
-29 - t   + -- - -- + -- + 26 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 81]][z]
Out[7]=   
       6    8
1 - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}
In[9]:=
{KnotDet[Knot[11, Alternating, 81]], KnotSignature[Knot[11, Alternating, 81]]}
Out[9]=   
{127, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 81]][q]
Out[10]=   
       -4   4    8    13              2       3       4      5      6    7
-17 - q   + -- - -- + -- + 20 q - 20 q  + 18 q  - 13 q  + 8 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}
In[12]:=
A2Invariant[Knot[11, Alternating, 81]][q]
Out[12]=   
     -12    -10    -8    -6   3    3     2      4      6      8      10    12
1 - q    + q    + q   - q   + -- - -- + q  - 2 q  + 5 q  - 3 q  + 3 q   - q   - 
                               4    2
                              q    q
 
       14      16      18    20
>   2 q   + 2 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 81]][a, z]
Out[13]=   
              2      2                       4      4                   6
       2   2 z    6 z       2  2      4   3 z    9 z     2  4      6   z
1 + 6 z  + ---- - ---- - 2 a  z  + 7 z  + ---- - ---- - a  z  + 2 z  + -- - 
             4      2                       4      2                    4
            a      a                       a      a                    a
 
       6    8
    5 z    z
>   ---- - --
      2     2
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 81]][a, z]
Out[14]=   
                                               2    2      2                3
    z    4 z   6 z            3         2   2 z    z    9 z       2  2   2 z
1 - -- - --- - --- - 4 a z - a  z - 13 z  + ---- + -- - ---- - 5 a  z  - ---- + 
     5    3     a                             6     4     2                7
    a    a                                   a     a     a                a
 
       3       3       3                               4      4      4
    5 z    19 z    18 z         3      3  3       4   z    7 z    2 z
>   ---- + ----- + ----- + 9 a z  + 3 a  z  + 44 z  + -- - ---- + ---- + 
      5      3       a                                 8     6      4
     a      a                                         a     a      a
 
        4                 5       5       5                                 6
    39 z        2  4   4 z    13 z    23 z         5      3  5       6   8 z
>   ----- + 15 a  z  + ---- - ----- - ----- + 3 a z  - 3 a  z  - 42 z  + ---- - 
      2                  7      5       3                                  6
     a                  a      a       a                                  a
 
        6       6                  7    7       7
    14 z    50 z        2  6   11 z    z    26 z          7    3  7      8
>   ----- - ----- - 14 a  z  + ----- - -- - ----- - 13 a z  + a  z  + 8 z  + 
      4       2                  5      3     a
     a       a                  a      a
 
        8       8                9       9                       10
    11 z    15 z       2  8   7 z    12 z         9      10   2 z
>   ----- + ----- + 4 a  z  + ---- + ----- + 5 a z  + 2 z   + -----
      4       2                 3      a                        2
     a       a                 a                               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 81]], Vassiliev[3][Knot[11, Alternating, 81]]}
Out[15]=   
{0, 0}
In[16]:=
Kh[Knot[11, Alternating, 81]][q, t]
Out[16]=   
           3     1       3       1       5       3       8      5      9
11 q + 10 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    8 q       3         5        5  2       7  2      7  3      9  3
>   --- + 10 q  t + 10 q  t + 8 q  t  + 10 q  t  + 5 q  t  + 8 q  t  + 
     t
 
       9  4      11  4    11  5      13  5    15  6
>   3 q  t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a81
K11a80
K11a80
K11a82
K11a82