© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a82
K11a82
K11a84
K11a84
K11a83
Knotscape
This page is passe. Go here instead!

   The Knot K11a83

Visit K11a83's page at Knotilus!

Acknowledgement

K11a83 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X12,5,13,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X18,14,19,13 X20,16,21,15 X8,18,9,17 X14,20,15,19 X6,21,7,22

Gauss Code: {1, -5, 2, -1, 3, -11, 4, -9, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, -8, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 12 16 2 22 18 20 8 14 6

Alexander Polynomial: t-4 - 5t-3 + 14t-2 - 23t-1 + 27 - 23t + 14t2 - 5t3 + t4

Conway Polynomial: 1 + 4z2 + 4z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {113, 4}

Jones Polynomial: - q-1 + 3 - 6q + 11q2 - 14q3 + 18q4 - 18q5 + 16q6 - 13q7 + 8q8 - 4q9 + q10

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-2 + 1 - 2q2 + q4 + 2q6 - q8 + 6q10 - q12 + 3q14 - 3q18 + q20 - 4q22 + q24 - q28 + q30

HOMFLY-PT Polynomial: a-8 + 2a-8z2 + a-8z4 - 6a-6 - 11a-6z2 - 8a-6z4 - 2a-6z6 + 8a-4 + 18a-4z2 + 15a-4z4 + 6a-4z6 + a-4z8 - 2a-2 - 5a-2z2 - 4a-2z4 - a-2z6

Kauffman Polynomial: a-12z4 - 2a-11z3 + 4a-11z5 + a-10z2 - 7a-10z4 + 8a-10z6 - a-9z + 7a-9z3 - 15a-9z5 + 11a-9z7 + a-8 - 3a-8z2 + 6a-8z4 - 14a-8z6 + 10a-8z8 - 9a-7z + 29a-7z3 - 32a-7z5 + 5a-7z7 + 5a-7z9 + 6a-6 - 24a-6z2 + 50a-6z4 - 51a-6z6 + 16a-6z8 + a-6z10 - 13a-5z + 31a-5z3 - 15a-5z5 - 13a-5z7 + 8a-5z9 + 8a-4 - 29a-4z2 + 52a-4z4 - 41a-4z6 + 9a-4z8 + a-4z10 - 7a-3z + 16a-3z3 - 6a-3z5 - 6a-3z7 + 3a-3z9 + 2a-2 - 9a-2z2 + 16a-2z4 - 12a-2z6 + 3a-2z8 - 2a-1z + 5a-1z3 - 4a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1183. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 21           1
j = 19          3 
j = 17         51 
j = 15        83  
j = 13       85   
j = 11      108    
j = 9     88     
j = 7    610      
j = 5   58       
j = 3  27        
j = 1 14         
j = -1 2          
j = -31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 83]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 83]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 5, 13, 6], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[18, 14, 19, 13], X[20, 16, 21, 15], 
 
>   X[8, 18, 9, 17], X[14, 20, 15, 19], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 83]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -11, 4, -9, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, 
 
>   -8, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 83]]
Out[5]=   
DTCode[4, 10, 12, 16, 2, 22, 18, 20, 8, 14, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 83]][t]
Out[6]=   
      -4   5    14   23              2      3    4
27 + t   - -- + -- - -- - 23 t + 14 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 83]][z]
Out[7]=   
       2      4      6    8
1 + 4 z  + 4 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 83]}
In[9]:=
{KnotDet[Knot[11, Alternating, 83]], KnotSignature[Knot[11, Alternating, 83]]}
Out[9]=   
{113, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 83]][q]
Out[10]=   
    1             2       3       4       5       6       7      8      9    10
3 - - - 6 q + 11 q  - 14 q  + 18 q  - 18 q  + 16 q  - 13 q  + 8 q  - 4 q  + q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 83]}
In[12]:=
A2Invariant[Knot[11, Alternating, 83]][q]
Out[12]=   
     -2      2    4      6    8      10    12      14      18    20      22
1 - q   - 2 q  + q  + 2 q  - q  + 6 q   - q   + 3 q   - 3 q   + q   - 4 q   + 
 
     24    28    30
>   q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 83]][a, z]
Out[13]=   
                        2       2       2      2    4      4       4      4
 -8   6    8    2    2 z    11 z    18 z    5 z    z    8 z    15 z    4 z
a   - -- + -- - -- + ---- - ----- + ----- - ---- + -- - ---- + ----- - ---- - 
       6    4    2     8      6       4       2     8     6      4       2
      a    a    a     a      a       a       a     a     a      a       a
 
       6      6    6    8
    2 z    6 z    z    z
>   ---- + ---- - -- + --
      6      4     2    4
     a      a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 83]][a, z]
Out[14]=   
                                                    2       2       2       2
 -8   6    8    2    z    9 z   13 z   7 z   2 z   z     3 z    24 z    29 z
a   + -- + -- + -- - -- - --- - ---- - --- - --- + --- - ---- - ----- - ----- - 
       6    4    2    9    7      5     3     a     10     8      6       4
      a    a    a    a    a      a     a           a      a      a       a
 
       2      3      3       3       3       3      3    4       4      4
    9 z    2 z    7 z    29 z    31 z    16 z    5 z    z     7 z    6 z
>   ---- - ---- + ---- + ----- + ----- + ----- + ---- + --- - ---- + ---- + 
      2     11      9      7       5       3      a      12    10      8
     a     a       a      a       a       a             a     a       a
 
        4       4       4      5       5       5       5      5      5      6
    50 z    52 z    16 z    4 z    15 z    32 z    15 z    6 z    4 z    8 z
>   ----- + ----- + ----- + ---- - ----- - ----- - ----- - ---- - ---- + ---- - 
      6       4       2      11      9       7       5       3     a      10
     a       a       a      a       a       a       a       a            a
 
        6       6       6       6       7      7       7      7    7       8
    14 z    51 z    41 z    12 z    11 z    5 z    13 z    6 z    z    10 z
>   ----- - ----- - ----- - ----- + ----- + ---- - ----- - ---- + -- + ----- + 
      8       6       4       2       9       7      5       3    a      8
     a       a       a       a       a       a      a       a           a
 
        8      8      8      9      9      9    10    10
    16 z    9 z    3 z    5 z    8 z    3 z    z     z
>   ----- + ---- + ---- + ---- + ---- + ---- + --- + ---
      6       4      2      7      5      3     6     4
     a       a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 83]], Vassiliev[3][Knot[11, Alternating, 83]]}
Out[15]=   
{4, 6}
In[16]:=
Kh[Knot[11, Alternating, 83]][q, t]
Out[16]=   
                                           3
   3      5     1      2     q    4 q   2 q       5        7         7  2
7 q  + 5 q  + ----- + ---- + -- + --- + ---- + 8 q  t + 6 q  t + 10 q  t  + 
               3  3      2    2    t     t
              q  t    q t    t
 
       9  2      9  3       11  3      11  4      13  4      13  5      15  5
>   8 q  t  + 8 q  t  + 10 q   t  + 8 q   t  + 8 q   t  + 5 q   t  + 8 q   t  + 
 
       15  6      17  6    17  7      19  7    21  8
>   3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a83
K11a82
K11a82
K11a84
K11a84