© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a352
K11a352
K11a354
K11a354
K11a353
Knotscape
This page is passe. Go here instead!

   The Knot K11a353

Visit K11a353's page at Knotilus!

Acknowledgement

K11a353 as Morse Link
DrawMorseLink

PD Presentation: X8291 X12,4,13,3 X16,6,17,5 X18,8,19,7 X22,10,1,9 X4,12,5,11 X20,14,21,13 X2,16,3,15 X6,18,7,17 X10,20,11,19 X14,22,15,21

Gauss Code: {1, -8, 2, -6, 3, -9, 4, -1, 5, -10, 6, -2, 7, -11, 8, -3, 9, -4, 10, -7, 11, -5}

DT (Dowker-Thistlethwaite) Code: 8 12 16 18 22 4 20 2 6 10 14

Alexander Polynomial: 5t-3 - 15t-2 + 26t-1 - 31 + 26t - 15t2 + 5t3

Conway Polynomial: 1 + 11z2 + 15z4 + 5z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {123, 6}

Jones Polynomial: q3 - 3q4 + 8q5 - 12q6 + 17q7 - 20q8 + 20q9 - 17q10 + 13q11 - 8q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 3q14 - q16 + q18 + 4q20 - 3q22 + 4q24 - 2q26 + q28 + 2q30 - 3q32 + 2q34 - 3q36 - q38 + q40 - q42

HOMFLY-PT Polynomial: - a-12 - 2a-12z2 - a-12z4 - 2a-10 - 3a-10z2 + a-10z4 + a-10z6 + 4a-8 + 14a-8z2 + 12a-8z4 + 3a-8z6 + 2a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: a-17z - 2a-17z3 + a-17z5 + a-16z2 - 4a-16z4 + 3a-16z6 - 4a-15z + 8a-15z3 - 10a-15z5 + 6a-15z7 - 4a-14z2 + 7a-14z4 - 10a-14z6 + 7a-14z8 - 3a-13z + 10a-13z3 - 9a-13z5 - a-13z7 + 5a-13z9 - a-12 + 4a-12z2 + 5a-12z4 - 15a-12z6 + 7a-12z8 + 2a-12z10 - a-11z + 3a-11z3 + 8a-11z5 - 18a-11z7 + 10a-11z9 + 2a-10 - 9a-10z2 + 19a-10z4 - 21a-10z6 + 6a-10z8 + 2a-10z10 - 3a-9z + 6a-9z3 - a-9z5 - 8a-9z7 + 5a-9z9 + 4a-8 - 16a-8z2 + 22a-8z4 - 18a-8z6 + 6a-8z8 + 3a-7z3 - 7a-7z5 + 3a-7z7 + 2a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {11, 35}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11353. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         61 
j = 23        72  
j = 21       106   
j = 19      107    
j = 17     1010     
j = 15    710      
j = 13   510       
j = 11  37        
j = 9  5         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 353]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 353]]
Out[3]=   
PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 19, 7], 
 
>   X[22, 10, 1, 9], X[4, 12, 5, 11], X[20, 14, 21, 13], X[2, 16, 3, 15], 
 
>   X[6, 18, 7, 17], X[10, 20, 11, 19], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 353]]
Out[4]=   
GaussCode[1, -8, 2, -6, 3, -9, 4, -1, 5, -10, 6, -2, 7, -11, 8, -3, 9, -4, 10, 
 
>   -7, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 353]]
Out[5]=   
DTCode[8, 12, 16, 18, 22, 4, 20, 2, 6, 10, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 353]][t]
Out[6]=   
      5    15   26              2      3
-31 + -- - -- + -- + 26 t - 15 t  + 5 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 353]][z]
Out[7]=   
        2       4      6
1 + 11 z  + 15 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 353]}
In[9]:=
{KnotDet[Knot[11, Alternating, 353]], KnotSignature[Knot[11, Alternating, 353]]}
Out[9]=   
{123, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 353]][q]
Out[10]=   
 3      4      5       6       7       8       9       10       11      12
q  - 3 q  + 8 q  - 12 q  + 17 q  - 20 q  + 20 q  - 17 q   + 13 q   - 8 q   + 
 
       13    14
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 353]}
In[12]:=
A2Invariant[Knot[11, Alternating, 353]][q]
Out[12]=   
 10      12      14    16    18      20      22      24      26    28      30
q   - 2 q   + 3 q   - q   + q   + 4 q   - 3 q   + 4 q   - 2 q   + q   + 2 q   - 
 
       32      34      36    38    40    42
>   3 q   + 2 q   - 3 q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 353]][a, z]
Out[13]=   
                      2      2       2      2    4     4        4      4
  -12    2    4    2 z    3 z    14 z    2 z    z     z     12 z    3 z
-a    - --- + -- - ---- - ---- + ----- + ---- - --- + --- + ----- + ---- + 
         10    8    12     10      8       6     12    10     8       6
        a     a    a      a       a       a     a     a      a       a
 
     6       6    6
    z     3 z    z
>   --- + ---- + --
     10     8     6
    a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 353]][a, z]
Out[14]=   
                                                  2       2      2      2
  -12    2    4     z    4 z   3 z    z    3 z   z     4 z    4 z    9 z
-a    + --- + -- + --- - --- - --- - --- - --- + --- - ---- + ---- - ---- - 
         10    8    17    15    13    11    9     16    14     12     10
        a     a    a     a     a     a     a     a     a      a      a
 
        2      2      3      3       3      3      3      3      4      4
    16 z    2 z    2 z    8 z    10 z    3 z    6 z    3 z    4 z    7 z
>   ----- + ---- - ---- + ---- + ----- + ---- + ---- + ---- - ---- + ---- + 
      8       6     17     15      13     11      9      7     16     14
     a       a     a      a       a      a       a      a     a      a
 
       4       4       4      4    5        5      5      5    5      5
    5 z    19 z    22 z    3 z    z     10 z    9 z    8 z    z    7 z
>   ---- + ----- + ----- - ---- + --- - ----- - ---- + ---- - -- - ---- + 
     12      10      8       6     17     15     13     11     9     7
    a       a       a       a     a      a      a      a      a     a
 
       6       6       6       6       6    6      7    7        7      7
    3 z    10 z    15 z    21 z    18 z    z    6 z    z     18 z    8 z
>   ---- - ----- - ----- - ----- - ----- + -- + ---- - --- - ----- - ---- + 
     16      14      12      10      8      6    15     13     11      9
    a       a       a       a       a      a    a      a      a       a
 
       7      8      8      8      8      9       9      9      10      10
    3 z    7 z    7 z    6 z    6 z    5 z    10 z    5 z    2 z     2 z
>   ---- + ---- + ---- + ---- + ---- + ---- + ----- + ---- + ----- + -----
      7     14     12     10      8     13      11      9      12      10
     a     a      a      a       a     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 353]], Vassiliev[3][Knot[11, Alternating, 353]]}
Out[15]=   
{11, 35}
In[16]:=
Kh[Knot[11, Alternating, 353]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3       13  4
q  + q  + 3 q  t + 5 q  t  + 3 q   t  + 7 q   t  + 5 q   t  + 10 q   t  + 
 
       15  4       15  5       17  5       17  6       19  6      19  7
>   7 q   t  + 10 q   t  + 10 q   t  + 10 q   t  + 10 q   t  + 7 q   t  + 
 
        21  7      21  8      23  8      23  9      25  9    25  10
>   10 q   t  + 6 q   t  + 7 q   t  + 2 q   t  + 6 q   t  + q   t   + 
 
       27  10    29  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a353
K11a352
K11a352
K11a354
K11a354