© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a351
K11a351
K11a353
K11a353
K11a352
Knotscape
This page is passe. Go here instead!

   The Knot K11a352

Visit K11a352's page at Knotilus!

Acknowledgement

K11a352 as Morse Link
DrawMorseLink

PD Presentation: X6271 X18,4,19,3 X16,5,17,6 X14,8,15,7 X20,9,21,10 X4,12,5,11 X2,13,3,14 X22,16,1,15 X12,18,13,17 X10,19,11,20 X8,21,9,22

Gauss Code: {1, -7, 2, -6, 3, -1, 4, -11, 5, -10, 6, -9, 7, -4, 8, -3, 9, -2, 10, -5, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 18 16 14 20 4 2 22 12 10 8

Alexander Polynomial: 2t-3 - 13t-2 + 32t-1 - 41 + 32t - 13t2 + 2t3

Conway Polynomial: 1 - 2z2 - z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a6, K11a132, ...}

Determinant and Signature: {135, 2}

Jones Polynomial: - q-4 + 5q-3 - 9q-2 + 14q-1 - 19 + 21q - 21q2 + 19q3 - 13q4 + 8q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + 3q-10 + 4q-4 - 5q-2 - q2 - 2q4 + 4q6 - 2q8 + 4q10 - 2q14 + 3q16 - 2q18 - q20 + q22

HOMFLY-PT Polynomial: a-6z2 - 2a-4z2 - 2a-4z4 + 2a-2 + a-2z2 + a-2z4 + a-2z6 - 3 - 2z2 + z4 + z6 + 2a2 - a2z4

Kauffman Polynomial: a-8z4 - 2a-7z3 + 4a-7z5 + 2a-6z2 - 7a-6z4 + 8a-6z6 + 2a-5z3 - 12a-5z5 + 11a-5z7 + 2a-4z2 + 3a-4z4 - 17a-4z6 + 12a-4z8 - 2a-3z3 + 6a-3z5 - 17a-3z7 + 10a-3z9 - 2a-2 + 28a-2z4 - 37a-2z6 + 6a-2z8 + 4a-2z10 - 2a-1z - 12a-1z3 + 51a-1z5 - 57a-1z7 + 18a-1z9 - 3 + 2z2 + 28z4 - 28z6 - z8 + 4z10 - 2az - 6az3 + 27az5 - 28az7 + 8az9 - 2a2 + 2a2z2 + 11a2z4 - 16a2z6 + 5a2z8 - 2a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11352. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         51 
j = 9        83  
j = 7       115   
j = 5      108    
j = 3     1111     
j = 1    911      
j = -1   510       
j = -3  49        
j = -5 15         
j = -7 4          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 352]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 352]]
Out[3]=   
PD[X[6, 2, 7, 1], X[18, 4, 19, 3], X[16, 5, 17, 6], X[14, 8, 15, 7], 
 
>   X[20, 9, 21, 10], X[4, 12, 5, 11], X[2, 13, 3, 14], X[22, 16, 1, 15], 
 
>   X[12, 18, 13, 17], X[10, 19, 11, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 352]]
Out[4]=   
GaussCode[1, -7, 2, -6, 3, -1, 4, -11, 5, -10, 6, -9, 7, -4, 8, -3, 9, -2, 10, 
 
>   -5, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 352]]
Out[5]=   
DTCode[6, 18, 16, 14, 20, 4, 2, 22, 12, 10, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 352]][t]
Out[6]=   
      2    13   32              2      3
-41 + -- - -- + -- + 32 t - 13 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 352]][z]
Out[7]=   
       2    4      6
1 - 2 z  - z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 6], Knot[11, Alternating, 132], 
 
>   Knot[11, Alternating, 352]}
In[9]:=
{KnotDet[Knot[11, Alternating, 352]], KnotSignature[Knot[11, Alternating, 352]]}
Out[9]=   
{135, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 352]][q]
Out[10]=   
       -4   5    9    14              2       3       4      5      6    7
-19 - q   + -- - -- + -- + 21 q - 21 q  + 19 q  - 13 q  + 8 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 352]}
In[12]:=
A2Invariant[Knot[11, Alternating, 352]][q]
Out[12]=   
  -12    3    4    5     2      4      6      8      10      14      16
-q    + --- + -- - -- - q  - 2 q  + 4 q  - 2 q  + 4 q   - 2 q   + 3 q   - 
         10    4    2
        q     q    q
 
       18    20    22
>   2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 352]][a, z]
Out[13]=   
                         2      2    2           4    4                 6
     2       2      2   z    2 z    z     4   2 z    z     2  4    6   z
-3 + -- + 2 a  - 2 z  + -- - ---- + -- + z  - ---- + -- - a  z  + z  + --
      2                  6     4     2          4     2                 2
     a                  a     a     a          a     a                 a
In[14]:=
Kauffman[Knot[11, Alternating, 352]][a, z]
Out[14]=   
                                         2      2                3      3
     2       2   2 z              2   2 z    2 z       2  2   2 z    2 z
-3 - -- - 2 a  - --- - 2 a z + 2 z  + ---- + ---- + 2 a  z  - ---- + ---- - 
      2           a                     6      4                7      5
     a                                 a      a                a      a
 
       3       3                     4      4      4       4
    2 z    12 z         3       4   z    7 z    3 z    28 z        2  4
>   ---- - ----- - 6 a z  + 28 z  + -- - ---- + ---- + ----- + 11 a  z  + 
      3      a                       8     6      4      2
     a                              a     a      a      a
 
       5       5      5       5                                  6       6
    4 z    12 z    6 z    51 z          5      3  5       6   8 z    17 z
>   ---- - ----- + ---- + ----- + 27 a z  - 2 a  z  - 28 z  + ---- - ----- - 
      7      5       3      a                                   6      4
     a      a       a                                          a      a
 
        6                  7       7       7                              8
    37 z        2  6   11 z    17 z    57 z          7    3  7    8   12 z
>   ----- - 16 a  z  + ----- - ----- - ----- - 28 a z  + a  z  - z  + ----- + 
      2                  5       3       a                              4
     a                  a       a                                      a
 
       8                 9       9                       10
    6 z       2  8   10 z    18 z         9      10   4 z
>   ---- + 5 a  z  + ----- + ----- + 8 a z  + 4 z   + -----
      2                3       a                        2
     a                a                                a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 352]], Vassiliev[3][Knot[11, Alternating, 352]]}
Out[15]=   
{-2, 0}
In[16]:=
Kh[Knot[11, Alternating, 352]][q, t]
Out[16]=   
           3     1       4       1       5       4       9      5     10
11 q + 11 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    9 q       3         5        5  2       7  2      7  3      9  3
>   --- + 11 q  t + 10 q  t + 8 q  t  + 11 q  t  + 5 q  t  + 8 q  t  + 
     t
 
       9  4      11  4    11  5      13  5    15  6
>   3 q  t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a352
K11a351
K11a351
K11a353
K11a353