© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a346
K11a346
K11a348
K11a348
K11a347
Knotscape
This page is passe. Go here instead!

   The Knot K11a347

Visit K11a347's page at Knotilus!

Acknowledgement

K11a347 as Morse Link
DrawMorseLink

PD Presentation: X6271 X16,3,17,4 X12,6,13,5 X20,8,21,7 X18,10,19,9 X4,12,5,11 X22,13,1,14 X10,16,11,15 X2,17,3,18 X8,20,9,19 X14,21,15,22

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -3, 7, -11, 8, -2, 9, -5, 10, -4, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 16 12 20 18 4 22 10 2 8 14

Alexander Polynomial: 2t-3 - 11t-2 + 26t-1 - 33 + 26t - 11t2 + 2t3

Conway Polynomial: 1 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {10113, K11a107, ...}

Determinant and Signature: {111, 2}

Jones Polynomial: q-3 - 3q-2 + 7q-1 - 11 + 15q - 18q2 + 18q3 - 15q4 + 12q5 - 7q6 + 3q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a159, ...}

A2 (sl(3)) Invariant: q-10 - q-6 + 3q-4 - q-2 + 2q2 - 5q4 + q6 - 2q8 + 2q10 + 4q12 - q14 + 4q16 - 2q18 - 2q20 + q22 - q24

HOMFLY-PT Polynomial: - 2a-6 - 2a-6z2 - a-6z4 + 5a-4 + 6a-4z2 + 3a-4z4 + a-4z6 - 3a-2 - 2a-2z2 + a-2z4 + a-2z6 - 3z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: - 2a-9z3 + a-9z5 - 5a-8z4 + 3a-8z6 - 2a-7z + 9a-7z3 - 13a-7z5 + 6a-7z7 + 2a-6 - 14a-6z2 + 28a-6z4 - 22a-6z6 + 8a-6z8 - a-5z3 + 13a-5z5 - 13a-5z7 + 6a-5z9 + 5a-4 - 27a-4z2 + 45a-4z4 - 28a-4z6 + 6a-4z8 + 2a-4z10 + 6a-3z - 26a-3z3 + 40a-3z5 - 29a-3z7 + 10a-3z9 + 3a-2 - 12a-2z2 + 13a-2z4 - 11a-2z6 + 2a-2z8 + 2a-2z10 + 4a-1z - 9a-1z3 + 5a-1z5 - 7a-1z7 + 4a-1z9 + 4z2 - 2z4 - 7z6 + 4z8 + 5az3 - 8az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11347. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          2 
j = 13         51 
j = 11        72  
j = 9       85   
j = 7      107    
j = 5     88     
j = 3    710      
j = 1   59       
j = -1  26        
j = -3 15         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 347]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 347]]
Out[3]=   
PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], 
 
>   X[18, 10, 19, 9], X[4, 12, 5, 11], X[22, 13, 1, 14], X[10, 16, 11, 15], 
 
>   X[2, 17, 3, 18], X[8, 20, 9, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 347]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -3, 7, -11, 8, -2, 9, -5, 10, 
 
>   -4, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 347]]
Out[5]=   
DTCode[6, 16, 12, 20, 18, 4, 22, 10, 2, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 347]][t]
Out[6]=   
      2    11   26              2      3
-33 + -- - -- + -- + 26 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 347]][z]
Out[7]=   
     4      6
1 + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 113], Knot[11, Alternating, 107], Knot[11, Alternating, 347]}
In[9]:=
{KnotDet[Knot[11, Alternating, 347]], KnotSignature[Knot[11, Alternating, 347]]}
Out[9]=   
{111, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 347]][q]
Out[10]=   
       -3   3    7              2       3       4       5      6      7    8
-11 + q   - -- + - + 15 q - 18 q  + 18 q  - 15 q  + 12 q  - 7 q  + 3 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 159], Knot[11, Alternating, 347]}
In[12]:=
A2Invariant[Knot[11, Alternating, 347]][q]
Out[12]=   
 -10    -6   3     -2      2      4    6      8      10      12    14      16
q    - q   + -- - q   + 2 q  - 5 q  + q  - 2 q  + 2 q   + 4 q   - q   + 4 q   - 
              4
             q
 
       18      20    22    24
>   2 q   - 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 347]][a, z]
Out[13]=   
                              2      2      2                   4      4    4
-2   5    3     2      2   2 z    6 z    2 z     2  2      4   z    3 z    z
-- + -- - -- + a  - 3 z  - ---- + ---- - ---- + a  z  - 2 z  - -- + ---- + -- + 
 6    4    2                 6      4      2                    6     4     2
a    a    a                 a      a      a                    a     a     a
 
     6    6
    z    z
>   -- + --
     4    2
    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 347]][a, z]
Out[14]=   
                                                 2       2       2
2    5    3     2   2 z   6 z   4 z      2   14 z    27 z    12 z       2  2
-- + -- + -- - a  - --- + --- + --- + 4 z  - ----- - ----- - ----- + 3 a  z  - 
 6    4    2         7     3     a             6       4       2
a    a    a         a     a                   a       a       a
 
       3      3    3       3      3                      4       4       4
    2 z    9 z    z    26 z    9 z         3      4   5 z    28 z    45 z
>   ---- + ---- - -- - ----- - ---- + 5 a z  - 2 z  - ---- + ----- + ----- + 
      9      7     5     3      a                       8      6       4
     a      a     a     a                              a      a       a
 
        4              5       5       5       5      5
    13 z       2  4   z    13 z    13 z    40 z    5 z         5      6
>   ----- - 3 a  z  + -- - ----- + ----- + ----- + ---- - 8 a z  - 7 z  + 
      2                9     7       5       3      a
     a                a     a       a       a
 
       6       6       6       6              7       7       7      7
    3 z    22 z    28 z    11 z     2  6   6 z    13 z    29 z    7 z
>   ---- - ----- - ----- - ----- + a  z  + ---- - ----- - ----- - ---- + 
      8      6       4       2               7      5       3      a
     a      a       a       a               a      a       a
 
                       8      8      8      9       9      9      10      10
         7      8   8 z    6 z    2 z    6 z    10 z    4 z    2 z     2 z
>   3 a z  + 4 z  + ---- + ---- + ---- + ---- + ----- + ---- + ----- + -----
                      6      4      2      5      3      a       4       2
                     a      a      a      a      a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 347]], Vassiliev[3][Knot[11, Alternating, 347]]}
Out[15]=   
{0, 3}
In[16]:=
Kh[Knot[11, Alternating, 347]][q, t]
Out[16]=   
         3     1       2       1       5      2      6    5 q       3
9 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 10 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2       7  2      7  3      9  3      9  4      11  4
>   8 q  t + 8 q  t  + 10 q  t  + 7 q  t  + 8 q  t  + 5 q  t  + 7 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   2 q   t  + 5 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a347
K11a346
K11a346
K11a348
K11a348