© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a345
K11a345
K11a347
K11a347
K11a346
Knotscape
This page is passe. Go here instead!

   The Knot K11a346

Visit K11a346's page at Knotilus!

Acknowledgement

K11a346 as Morse Link
DrawMorseLink

PD Presentation: X6271 X16,3,17,4 X12,6,13,5 X18,8,19,7 X20,10,21,9 X4,12,5,11 X22,13,1,14 X10,16,11,15 X2,17,3,18 X8,20,9,19 X14,21,15,22

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -3, 7, -11, 8, -2, 9, -4, 10, -5, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 16 12 18 20 4 22 10 2 8 14

Alexander Polynomial: t-4 - 5t-3 + 12t-2 - 18t-1 + 21 - 18t + 12t2 - 5t3 + t4

Conway Polynomial: 1 + z2 + 2z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a106, K11a194, ...}

Determinant and Signature: {93, 4}

Jones Polynomial: q-2 - 3q-1 + 6 - 9q + 13q2 - 14q3 + 14q4 - 13q5 + 10q6 - 6q7 + 3q8 - q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-6 + 1 - 2q2 + 2q4 + 2q10 - 3q12 + 3q14 - q16 + q18 + q20 - 2q22 + q24 - q26

HOMFLY-PT Polynomial: - 2a-6 - 5a-6z2 - 4a-6z4 - a-6z6 + 5a-4 + 15a-4z2 + 14a-4z4 + 6a-4z6 + a-4z8 - 4a-2 - 12a-2z2 - 9a-2z4 - 2a-2z6 + 2 + 3z2 + z4

Kauffman Polynomial: a-11z3 + 3a-10z4 - 3a-9z3 + 6a-9z5 + 4a-8z2 - 14a-8z4 + 10a-8z6 - 4a-7z + 17a-7z3 - 29a-7z5 + 13a-7z7 + 2a-6 - 7a-6z2 + 19a-6z4 - 31a-6z6 + 12a-6z8 - 7a-5z + 27a-5z3 - 17a-5z5 - 12a-5z7 + 7a-5z9 + 5a-4 - 30a-4z2 + 68a-4z4 - 53a-4z6 + 8a-4z8 + 2a-4z10 - 3a-3z - 6a-3z3 + 42a-3z5 - 40a-3z7 + 10a-3z9 + 4a-2 - 26a-2z2 + 41a-2z4 - 17a-2z6 - 3a-2z8 + 2a-2z10 - 12a-1z3 + 24a-1z5 - 15a-1z7 + 3a-1z9 + 2 - 7z2 + 9z4 - 5z6 + z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11346. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 19           1
j = 17          2 
j = 15         41 
j = 13        62  
j = 11       74   
j = 9      76    
j = 7     77     
j = 5    67      
j = 3   48       
j = 1  25        
j = -1 14         
j = -3 2          
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 346]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 346]]
Out[3]=   
PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[12, 6, 13, 5], X[18, 8, 19, 7], 
 
>   X[20, 10, 21, 9], X[4, 12, 5, 11], X[22, 13, 1, 14], X[10, 16, 11, 15], 
 
>   X[2, 17, 3, 18], X[8, 20, 9, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 346]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -3, 7, -11, 8, -2, 9, -4, 10, 
 
>   -5, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 346]]
Out[5]=   
DTCode[6, 16, 12, 18, 20, 4, 22, 10, 2, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 346]][t]
Out[6]=   
      -4   5    12   18              2      3    4
21 + t   - -- + -- - -- - 18 t + 12 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 346]][z]
Out[7]=   
     2      4      6    8
1 + z  + 2 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 106], Knot[11, Alternating, 194], 
 
>   Knot[11, Alternating, 346]}
In[9]:=
{KnotDet[Knot[11, Alternating, 346]], KnotSignature[Knot[11, Alternating, 346]]}
Out[9]=   
{93, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 346]][q]
Out[10]=   
     -2   3             2       3       4       5       6      7      8    9
6 + q   - - - 9 q + 13 q  - 14 q  + 14 q  - 13 q  + 10 q  - 6 q  + 3 q  - q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 346]}
In[12]:=
A2Invariant[Knot[11, Alternating, 346]][q]
Out[12]=   
     -6      2      4      10      12      14    16    18    20      22    24
1 + q   - 2 q  + 2 q  + 2 q   - 3 q   + 3 q   - q   + q   + q   - 2 q   + q   - 
 
     26
>   q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 346]][a, z]
Out[13]=   
                             2       2       2           4       4      4
    2    5    4       2   5 z    15 z    12 z     4   4 z    14 z    9 z
2 - -- + -- - -- + 3 z  - ---- + ----- - ----- + z  - ---- + ----- - ---- - 
     6    4    2            6      4       2            6      4       2
    a    a    a            a      a       a            a      a       a
 
     6      6      6    8
    z    6 z    2 z    z
>   -- + ---- - ---- + --
     6     4      2     4
    a     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 346]][a, z]
Out[14]=   
                                               2      2       2       2    3
    2    5    4    4 z   7 z   3 z      2   4 z    7 z    30 z    26 z    z
2 + -- + -- + -- - --- - --- - --- - 7 z  + ---- - ---- - ----- - ----- + --- - 
     6    4    2    7     5     3             8      6      4       2      11
    a    a    a    a     a     a             a      a      a       a      a
 
       3       3       3      3       3             4       4       4       4
    3 z    17 z    27 z    6 z    12 z       4   3 z    14 z    19 z    68 z
>   ---- + ----- + ----- - ---- - ----- + 9 z  + ---- - ----- + ----- + ----- + 
      9      7       5       3      a             10      8       6       4
     a      a       a       a                    a       a       a       a
 
        4      5       5       5       5       5              6       6
    41 z    6 z    29 z    17 z    42 z    24 z       6   10 z    31 z
>   ----- + ---- - ----- - ----- + ----- + ----- - 5 z  + ----- - ----- - 
      2       9      7       5       3       a              8       6
     a       a      a       a       a                      a       a
 
        6       6       7       7       7       7            8      8      8
    53 z    17 z    13 z    12 z    40 z    15 z     8   12 z    8 z    3 z
>   ----- - ----- + ----- - ----- - ----- - ----- + z  + ----- + ---- - ---- + 
      4       2       7       5       3       a            6       4      2
     a       a       a       a       a                    a       a      a
 
       9       9      9      10      10
    7 z    10 z    3 z    2 z     2 z
>   ---- + ----- + ---- + ----- + -----
      5      3      a       4       2
     a      a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 346]], Vassiliev[3][Knot[11, Alternating, 346]]}
Out[15]=   
{1, 3}
In[16]:=
Kh[Knot[11, Alternating, 346]][q, t]
Out[16]=   
                                                           3
   3      5     1       2      1      4     2 q   5 q   4 q       5
8 q  + 6 q  + ----- + ----- + ---- + ---- + --- + --- + ---- + 7 q  t + 
               5  4    3  3      3      2    2     t     t
              q  t    q  t    q t    q t    t
 
       7        7  2      9  2      9  3      11  3      11  4      13  4
>   7 q  t + 7 q  t  + 7 q  t  + 6 q  t  + 7 q   t  + 4 q   t  + 6 q   t  + 
 
       13  5      15  5    15  6      17  6    19  7
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a346
K11a345
K11a345
K11a347
K11a347