© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a347
K11a347
K11a349
K11a349
K11a348
Knotscape
This page is passe. Go here instead!

   The Knot K11a348

Visit K11a348's page at Knotilus!

Acknowledgement

K11a348 as Morse Link
DrawMorseLink

PD Presentation: X6271 X18,4,19,3 X16,5,17,6 X12,8,13,7 X4,10,5,9 X2,11,3,12 X20,14,21,13 X22,16,1,15 X10,18,11,17 X8,19,9,20 X14,22,15,21

Gauss Code: {1, -6, 2, -5, 3, -1, 4, -10, 5, -9, 6, -4, 7, -11, 8, -3, 9, -2, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 18 16 12 4 2 20 22 10 8 14

Alexander Polynomial: t-4 - 7t-3 + 19t-2 - 29t-1 + 33 - 29t + 19t2 - 7t3 + t4

Conway Polynomial: 1 - 3z4 + z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {145, 4}

Jones Polynomial: - q-1 + 5 - 9q + 15q2 - 20q3 + 23q4 - 23q5 + 20q6 - 15q7 + 9q8 - 4q9 + q10

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-2 + 3 - q2 + 3q4 + 2q6 - 3q8 + 4q10 - 6q12 + 2q14 - q16 - q18 + 4q20 - 3q22 + 2q24 - q26 - q28 + q30

HOMFLY-PT Polynomial: 2a-8z2 + a-8z4 + a-6 - 3a-6z2 - 6a-6z4 - 2a-6z6 - 3a-4 - a-4z2 + 4a-4z4 + 4a-4z6 + a-4z8 + 3a-2 + 2a-2z2 - 2a-2z4 - a-2z6

Kauffman Polynomial: a-12z4 - a-11z3 + 4a-11z5 + 2a-10z2 - 7a-10z4 + 9a-10z6 - a-9z + 9a-9z3 - 19a-9z5 + 14a-9z7 - 3a-8z2 + 11a-8z4 - 24a-8z6 + 15a-8z8 - a-7z + 5a-7z3 - 5a-7z5 - 14a-7z7 + 11a-7z9 - a-6 - 9a-6z2 + 41a-6z4 - 50a-6z6 + 11a-6z8 + 4a-6z10 + a-5z - 12a-5z3 + 46a-5z5 - 56a-5z7 + 19a-5z9 - 3a-4 - 2a-4z2 + 34a-4z4 - 33a-4z6 + a-4z8 + 4a-4z10 + a-3z - 7a-3z3 + 26a-3z5 - 27a-3z7 + 8a-3z9 - 3a-2 + 2a-2z2 + 12a-2z4 - 16a-2z6 + 5a-2z8 - 2a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11348. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 21           1
j = 19          3 
j = 17         61 
j = 15        93  
j = 13       116   
j = 11      129    
j = 9     1111     
j = 7    912      
j = 5   611       
j = 3  410        
j = 1 15         
j = -1 4          
j = -31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 348]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 348]]
Out[3]=   
PD[X[6, 2, 7, 1], X[18, 4, 19, 3], X[16, 5, 17, 6], X[12, 8, 13, 7], 
 
>   X[4, 10, 5, 9], X[2, 11, 3, 12], X[20, 14, 21, 13], X[22, 16, 1, 15], 
 
>   X[10, 18, 11, 17], X[8, 19, 9, 20], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 348]]
Out[4]=   
GaussCode[1, -6, 2, -5, 3, -1, 4, -10, 5, -9, 6, -4, 7, -11, 8, -3, 9, -2, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 348]]
Out[5]=   
DTCode[6, 18, 16, 12, 4, 2, 20, 22, 10, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 348]][t]
Out[6]=   
      -4   7    19   29              2      3    4
33 + t   - -- + -- - -- - 29 t + 19 t  - 7 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 348]][z]
Out[7]=   
       4    6    8
1 - 3 z  + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 348]}
In[9]:=
{KnotDet[Knot[11, Alternating, 348]], KnotSignature[Knot[11, Alternating, 348]]}
Out[9]=   
{145, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 348]][q]
Out[10]=   
    1             2       3       4       5       6       7      8      9    10
5 - - - 9 q + 15 q  - 20 q  + 23 q  - 23 q  + 20 q  - 15 q  + 9 q  - 4 q  + q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 348]}
In[12]:=
A2Invariant[Knot[11, Alternating, 348]][q]
Out[12]=   
     -2    2      4      6      8      10      12      14    16    18      20
3 - q   - q  + 3 q  + 2 q  - 3 q  + 4 q   - 6 q   + 2 q   - q   - q   + 4 q   - 
 
       22      24    26    28    30
>   3 q   + 2 q   - q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 348]][a, z]
Out[13]=   
                   2      2    2      2    4      4      4      4      6
 -6   3    3    2 z    3 z    z    2 z    z    6 z    4 z    2 z    2 z
a   - -- + -- + ---- - ---- - -- + ---- + -- - ---- + ---- - ---- - ---- + 
       4    2     8      6     4     2     8     6      4      2      6
      a    a     a      a     a     a     a     a      a      a      a
 
       6    6    8
    4 z    z    z
>   ---- - -- + --
      4     2    4
     a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 348]][a, z]
Out[14]=   
                                        2      2      2      2      2    3
  -6   3    3    z    z    z    z    2 z    3 z    9 z    2 z    2 z    z
-a   - -- - -- - -- - -- + -- + -- + ---- - ---- - ---- - ---- + ---- - --- + 
        4    2    9    7    5    3    10      8      6      4      2     11
       a    a    a    a    a    a    a       a      a      a      a     a
 
       3      3       3      3    4       4       4       4       4       4
    9 z    5 z    12 z    7 z    z     7 z    11 z    41 z    34 z    12 z
>   ---- + ---- - ----- - ---- + --- - ---- + ----- + ----- + ----- + ----- + 
      9      7      5       3     12    10      8       6       4       2
     a      a      a       a     a     a       a       a       a       a
 
       5       5      5       5       5      5      6       6       6       6
    4 z    19 z    5 z    46 z    26 z    2 z    9 z    24 z    50 z    33 z
>   ---- - ----- - ---- + ----- + ----- - ---- + ---- - ----- - ----- - ----- - 
     11      9       7      5       3      a      10      8       6       4
    a       a       a      a       a             a       a       a       a
 
        6       7       7       7       7    7       8       8    8      8
    16 z    14 z    14 z    56 z    27 z    z    15 z    11 z    z    5 z
>   ----- + ----- - ----- - ----- - ----- + -- + ----- + ----- + -- + ---- + 
      2       9       7       5       3     a      8       6      4     2
     a       a       a       a       a            a       a      a     a
 
        9       9      9      10      10
    11 z    19 z    8 z    4 z     4 z
>   ----- + ----- + ---- + ----- + -----
      7       5       3      6       4
     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 348]], Vassiliev[3][Knot[11, Alternating, 348]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, Alternating, 348]][q, t]
Out[16]=   
                                            3
    3      5     1      4     q    5 q   4 q        5        7         7  2
10 q  + 6 q  + ----- + ---- + -- + --- + ---- + 11 q  t + 9 q  t + 12 q  t  + 
                3  3      2    2    t     t
               q  t    q t    t
 
        9  2       9  3       11  3      11  4       13  4      13  5
>   11 q  t  + 11 q  t  + 12 q   t  + 9 q   t  + 11 q   t  + 6 q   t  + 
 
       15  5      15  6      17  6    17  7      19  7    21  8
>   9 q   t  + 3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a348
K11a347
K11a347
K11a349
K11a349