© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a316
K11a316
K11a318
K11a318
K11a317
Knotscape
This page is passe. Go here instead!

   The Knot K11a317

Visit K11a317's page at Knotilus!

Acknowledgement

K11a317 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,3,13,4 X16,5,17,6 X20,8,21,7 X22,10,1,9 X18,11,19,12 X2,13,3,14 X10,15,11,16 X4,17,5,18 X14,19,15,20 X8,22,9,21

Gauss Code: {1, -7, 2, -9, 3, -1, 4, -11, 5, -8, 6, -2, 7, -10, 8, -3, 9, -6, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 12 16 20 22 18 2 10 4 14 8

Alexander Polynomial: - 3t-3 + 14t-2 - 28t-1 + 35 - 28t + 14t2 - 3t3

Conway Polynomial: 1 + z2 - 4z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {K11a31, ...}

Determinant and Signature: {125, 0}

Jones Polynomial: - q-7 + 3q-6 - 7q-5 + 12q-4 - 16q-3 + 20q-2 - 20q-1 + 18 - 14q + 9q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11a67, ...}

A2 (sl(3)) Invariant: - q-22 - q-20 + q-18 - 2q-16 + 3q-14 + 2q-12 - 2q-10 + 4q-8 - 3q-6 + q-4 - 2 + 4q2 - 3q4 + 2q6 + q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2z2 + a-2z4 + 2 + 2z2 - z4 - z6 - 4a2 - 9a2z2 - 7a2z4 - 2a2z6 + 5a4 + 8a4z2 + 3a4z4 - 2a6 - a6z2

Kauffman Polynomial: a-4z4 - a-3z3 + 4a-3z5 + 3a-2z2 - 8a-2z4 + 9a-2z6 - a-1z + 9a-1z3 - 18a-1z5 + 13a-1z7 + 2 - 3z2 + 5z4 - 16z6 + 12z8 - az + 9az3 - 18az5 - az7 + 7az9 + 4a2 - 18a2z2 + 36a2z4 - 42a2z6 + 13a2z8 + 2a2z10 - a3z3 + 13a3z5 - 26a3z7 + 11a3z9 + 5a4 - 18a4z2 + 35a4z4 - 28a4z6 + 4a4z8 + 2a4z10 - 2a5z + 5a5z3 + 5a5z5 - 11a5z7 + 4a5z9 + 2a6 - 6a6z2 + 13a6z4 - 11a6z6 + 3a6z8 - 2a7z + 5a7z3 - 4a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11317. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         61 
j = 3        83  
j = 1       106   
j = -1      119    
j = -3     99     
j = -5    711      
j = -7   59       
j = -9  27        
j = -11 15         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 317]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 317]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 3, 13, 4], X[16, 5, 17, 6], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[18, 11, 19, 12], X[2, 13, 3, 14], X[10, 15, 11, 16], 
 
>   X[4, 17, 5, 18], X[14, 19, 15, 20], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 317]]
Out[4]=   
GaussCode[1, -7, 2, -9, 3, -1, 4, -11, 5, -8, 6, -2, 7, -10, 8, -3, 9, -6, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 317]]
Out[5]=   
DTCode[6, 12, 16, 20, 22, 18, 2, 10, 4, 14, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 317]][t]
Out[6]=   
     3    14   28              2      3
35 - -- + -- - -- - 28 t + 14 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 317]][z]
Out[7]=   
     2      4      6
1 + z  - 4 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 31], Knot[11, Alternating, 317]}
In[9]:=
{KnotDet[Knot[11, Alternating, 317]], KnotSignature[Knot[11, Alternating, 317]]}
Out[9]=   
{125, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 317]][q]
Out[10]=   
      -7   3    7    12   16   20   20             2      3    4
18 - q   + -- - -- + -- - -- + -- - -- - 14 q + 9 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 67], Knot[11, Alternating, 317]}
In[12]:=
A2Invariant[Knot[11, Alternating, 317]][q]
Out[12]=   
      -22    -20    -18    2     3     2     2    4    3     -4      2      4
-2 - q    - q    + q    - --- + --- + --- - --- + -- - -- + q   + 4 q  - 3 q  + 
                           16    14    12    10    8    6
                          q     q     q     q     q    q
 
       6    8      10    12
>   2 q  + q  - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 317]][a, z]
Out[13]=   
                                 2                                     4
       2      4      6      2   z       2  2      4  2    6  2    4   z
2 - 4 a  + 5 a  - 2 a  + 2 z  + -- - 9 a  z  + 8 a  z  - a  z  - z  + -- - 
                                 2                                     2
                                a                                     a
 
       2  4      4  4    6      2  6
>   7 a  z  + 3 a  z  - z  - 2 a  z
In[14]:=
Kauffman[Knot[11, Alternating, 317]][a, z]
Out[14]=   
                                                               2
       2      4      6   z            5        7        2   3 z        2  2
2 + 4 a  + 5 a  + 2 a  - - - a z - 2 a  z - 2 a  z - 3 z  + ---- - 18 a  z  - 
                         a                                    2
                                                             a
 
                          3      3
        4  2      6  2   z    9 z         3    3  3      5  3      7  3
>   18 a  z  - 6 a  z  - -- + ---- + 9 a z  - a  z  + 5 a  z  + 5 a  z  + 
                          3    a
                         a
 
            4      4                                       5       5
       4   z    8 z        2  4       4  4       6  4   4 z    18 z
>   5 z  + -- - ---- + 36 a  z  + 35 a  z  + 13 a  z  + ---- - ----- - 
            4     2                                       3      a
           a     a                                       a
 
                                                        6
          5       3  5      5  5      7  5       6   9 z        2  6
>   18 a z  + 13 a  z  + 5 a  z  - 4 a  z  - 16 z  + ---- - 42 a  z  - 
                                                       2
                                                      a
 
                              7
        4  6       6  6   13 z       7       3  7       5  7    7  7       8
>   28 a  z  - 11 a  z  + ----- - a z  - 26 a  z  - 11 a  z  + a  z  + 12 z  + 
                            a
 
        2  8      4  8      6  8        9       3  9      5  9      2  10
>   13 a  z  + 4 a  z  + 3 a  z  + 7 a z  + 11 a  z  + 4 a  z  + 2 a  z   + 
 
       4  10
>   2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 317]], Vassiliev[3][Knot[11, Alternating, 317]]}
Out[15]=   
{1, -3}
In[16]:=
Kh[Knot[11, Alternating, 317]][q, t]
Out[16]=   
9            1        2        1        5        2       7       5       9
- + 10 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q           15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
           q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      11       9      9     11               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 6 q t + 8 q  t + 3 q  t  + 6 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a317
K11a316
K11a316
K11a318
K11a318