© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a315
K11a315
K11a317
K11a317
K11a316
Knotscape
This page is passe. Go here instead!

   The Knot K11a316

Visit K11a316's page at Knotilus!

Acknowledgement

K11a316 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X16,5,17,6 X20,8,21,7 X22,10,1,9 X4,12,5,11 X18,13,19,14 X10,15,11,16 X2,17,3,18 X14,19,15,20 X8,22,9,21

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -11, 5, -8, 6, -2, 7, -10, 8, -3, 9, -7, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 12 16 20 22 4 18 10 2 14 8

Alexander Polynomial: t-4 - 5t-3 + 14t-2 - 25t-1 + 31 - 25t + 14t2 - 5t3 + t4

Conway Polynomial: 1 + 2z2 + 4z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a35, ...}

Determinant and Signature: {121, 0}

Jones Polynomial: - q-5 + 3q-4 - 7q-3 + 12q-2 - 16q-1 + 20 - 19q + 17q2 - 13q3 + 8q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a35, K11a36, ...}

A2 (sl(3)) Invariant: - q-14 + q-12 - 3q-10 + q-8 + q-6 - 2q-4 + 6q-2 - 1 + 4q2 - 2q6 + 2q8 - 4q10 + q12 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 5a-2 - 11a-2z2 - 8a-2z4 - 2a-2z6 + 8 + 17z2 + 15z4 + 6z6 + z8 - 3a2 - 6a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: a-6z2 - 2a-6z4 + a-6z6 + 6a-5z3 - 10a-5z5 + 4a-5z7 + a-4 - a-4z2 + 5a-4z4 - 13a-4z6 + 6a-4z8 - a-3z + 3a-3z3 - 5a-3z5 - 6a-3z7 + 5a-3z9 + 5a-2 - 18a-2z2 + 27a-2z4 - 26a-2z6 + 7a-2z8 + 2a-2z10 - 3a-1z - 5a-1z3 + 23a-1z5 - 26a-1z7 + 11a-1z9 + 8 - 30z2 + 52z4 - 36z6 + 9z8 + 2z10 - 5az + 10az3 + 4az5 - 10az7 + 6az9 + 3a2 - 14a2z2 + 27a2z4 - 21a2z6 + 8a2z8 - 3a3z + 10a3z3 - 13a3z5 + 6a3z7 - 5a4z4 + 3a4z6 - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11316. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         51 
j = 7        83  
j = 5       95   
j = 3      108    
j = 1     109     
j = -1    711      
j = -3   59       
j = -5  27        
j = -7 15         
j = -9 2          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 316]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 316]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[16, 5, 17, 6], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[4, 12, 5, 11], X[18, 13, 19, 14], X[10, 15, 11, 16], 
 
>   X[2, 17, 3, 18], X[14, 19, 15, 20], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 316]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -11, 5, -8, 6, -2, 7, -10, 8, -3, 9, -7, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 316]]
Out[5]=   
DTCode[6, 12, 16, 20, 22, 4, 18, 10, 2, 14, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 316]][t]
Out[6]=   
      -4   5    14   25              2      3    4
31 + t   - -- + -- - -- - 25 t + 14 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 316]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  + 4 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 35], Knot[11, Alternating, 316]}
In[9]:=
{KnotDet[Knot[11, Alternating, 316]], KnotSignature[Knot[11, Alternating, 316]]}
Out[9]=   
{121, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 316]][q]
Out[10]=   
      -5   3    7    12   16              2       3      4      5    6
20 - q   + -- - -- + -- - -- - 19 q + 17 q  - 13 q  + 8 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 35], Knot[11, Alternating, 36], 
 
>   Knot[11, Alternating, 316]}
In[12]:=
A2Invariant[Knot[11, Alternating, 316]][q]
Out[12]=   
      -14    -12    3     -8    -6   2    6       2      6      8      10
-1 - q    + q    - --- + q   + q   - -- + -- + 4 q  - 2 q  + 2 q  - 4 q   + 
                    10                4    2
                   q                 q    q
 
     12    16    18
>   q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 316]][a, z]
Out[13]=   
                                 2       2                      4      4
     -4   5       2       2   2 z    11 z       2  2       4   z    8 z
8 + a   - -- - 3 a  + 17 z  + ---- - ----- - 6 a  z  + 15 z  + -- - ---- - 
           2                    4      2                        4     2
          a                    a      a                        a     a
 
                        6
       2  4      6   2 z     2  6    8
>   4 a  z  + 6 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 316]][a, z]
Out[14]=   
                                                           2    2       2
     -4   5       2   z    3 z              3         2   z    z    18 z
8 + a   + -- + 3 a  - -- - --- - 5 a z - 3 a  z - 30 z  + -- - -- - ----- - 
           2           3    a                              6    4     2
          a           a                                   a    a     a
 
                  3      3      3
        2  2   6 z    3 z    5 z          3       3  3      5  3       4
>   14 a  z  + ---- + ---- - ---- + 10 a z  + 10 a  z  - 2 a  z  + 52 z  - 
                 5      3     a
                a      a
 
       4      4       4                            5      5       5
    2 z    5 z    27 z        2  4      4  4   10 z    5 z    23 z         5
>   ---- + ---- + ----- + 27 a  z  - 5 a  z  - ----- - ---- + ----- + 4 a z  - 
      6      4      2                            5       3      a
     a      a      a                            a       a
 
                                6       6       6                           7
        3  5    5  5       6   z    13 z    26 z        2  6      4  6   4 z
>   13 a  z  + a  z  - 36 z  + -- - ----- - ----- - 21 a  z  + 3 a  z  + ---- - 
                                6     4       2                            5
                               a     a       a                            a
 
       7       7                                 8      8                9
    6 z    26 z          7      3  7      8   6 z    7 z       2  8   5 z
>   ---- - ----- - 10 a z  + 6 a  z  + 9 z  + ---- + ---- + 8 a  z  + ---- + 
      3      a                                  4      2                3
     a                                         a      a                a
 
        9                       10
    11 z         9      10   2 z
>   ----- + 6 a z  + 2 z   + -----
      a                        2
                              a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 316]], Vassiliev[3][Knot[11, Alternating, 316]]}
Out[15]=   
{2, -1}
In[16]:=
Kh[Knot[11, Alternating, 316]][q, t]
Out[16]=   
11            1        2       1       5       2       7       5      9
-- + 10 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     7                3        3  2      5  2      5  3      7  3      7  4
>   --- + 9 q t + 10 q  t + 8 q  t  + 9 q  t  + 5 q  t  + 8 q  t  + 3 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   5 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a316
K11a315
K11a315
K11a317
K11a317